forked from proxyma-centauri/c_unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
305 lines (251 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from datetime import datetime
import os
import torch
import torchio as tio
import pytorch_lightning as pl
import numpy as np
import nibabel as nib
import pymia.evaluation.evaluator as eval_
import pymia.evaluation.metric as metric
import pymia.evaluation.writer as writer
from pytorch_lightning import loggers as pl_loggers
from pathlib import Path
from decouple import config
from codecarbon import track_emissions
from c_unet.training.datamodule import DataModule
from c_unet.architectures.unet import Unet
from c_unet.training.tverskyLosses import FocalTversky_loss
from c_unet.training.lightningUnet import LightningUnet
from c_unet.utils.plots.plot import plot_middle_slice
from c_unet.utils.logging.logging import configure_and_return_logger
@track_emissions(offline=True, country_iso_code="FRA")
def main(logger, args):
# CONFIG
logger.info(f"CONFIGURATION \n\n {args}")
print("\nYou are running with the following configuration:\n")
print(args)
print("\n --- \n")
# DATA
data = DataModule(args.get("PATH_TO_DATA"),
subset_name=args.get("SUBSET_NAME"),
batch_size=args.get("BATCH_SIZE"),
num_workers=args.get("NUM_WORKERS"),
test_has_labels=args.get("TEST_HAS_LABELS"),
seed=args.get("SEED"))
data.prepare_data()
data.setup()
logger.info("Data set up\n")
print('Training: ', len(data.train_set))
print('Validation: ', len(data.val_set))
print('Test: ', len(data.test_set))
print("\n --- \n")
# MODEL
if args.get("GROUP") is not None:
model = Unet(args.get("GROUP"),
args.get("GROUP_DIM"),
args.get("IN_CHANNELS"),
args.get("OUT_CHANNELS"),
final_activation=args.get("FINAL_ACTIVATION"),
nonlinearity=args.get("NONLIN"),
normalization=args.get("NORMALIZATION"),
divider=args.get("DIVIDER"),
model_depth=args.get("MODEL_DEPTH"),
dropout=args.get("DROPOUT"))
else:
model = Unet(None,
1,
args.get("IN_CHANNELS"),
args.get("OUT_CHANNELS"),
final_activation=args.get("FINAL_ACTIVATION"),
nonlinearity=args.get("NONLIN"),
normalization=args.get("NORMALIZATION"),
divider=args.get("DIVIDER"),
model_depth=args.get("MODEL_DEPTH"),
dropout=args.get("DROPOUT"))
# LIGHTNING
loss = FocalTversky_loss({"apply_nonlin": None})
log_name = f"{args.get('LOG_NAME')}-{args.get('MODEL_DEPTH')}-{args.get('LEARNING_RATE')}-{args.get('GRADIENT_CLIP')}"
tb_logger = pl_loggers.TensorBoardLogger(args.get("LOGS_DIR"),
name=log_name,
default_hp_metric=False)
callbacks = [pl.callbacks.ModelCheckpoint(monitor='val_loss')]
if args.get("EARLY_STOPPING") is not None and args.get("EARLY_STOPPING"):
early_stopping = pl.callbacks.early_stopping.EarlyStopping(
monitor='val_loss')
callbacks.append(early_stopping)
# LOAD FROM CHECKPOINTS
if args.get("LOAD_FROM_CHECKPOINTS"):
path_checkpoint = os.path.abspath(args.get("CHECKPOINTS_PATH"))
lightning_model = LightningUnet.load_from_checkpoint(path_checkpoint)
logger.info("Logged from CHECKPOINTS\n")
else:
lightning_model = LightningUnet(
loss,
torch.optim.AdamW,
model,
learning_rate=args.get("LEARNING_RATE"),
gradients_histograms=args.get("HISTOGRAMS"))
logger.info("Created new model\n")
# SUMMARY OF MODEL
print(lightning_model.summarize())
# TRAINING
if args.get("SHOULD_TRAIN"):
trainer = pl.Trainer(
gpus=args.get("GPUS"),
precision=args.get("PRECISION"),
log_gpu_memory=True,
max_epochs=args.get("MAX_EPOCHS"),
log_every_n_steps=args.get("LOG_STEPS"),
logger=tb_logger,
callbacks=callbacks,
benchmark=True,
gradient_clip_val=args.get("GRADIENT_CLIP"),
gradient_clip_algorithm='value',
stochastic_weight_avg=True,
progress_bar_refresh_rate=2,
)
start = datetime.now()
print('\nTraining started at', start)
logger.info(f"Training started at {start}")
trainer.fit(model=lightning_model.cuda(), datamodule=data)
print('\nTraining duration:', datetime.now() - start)
logger.info(f"Training duration: {datetime.now() - start}")
else:
print("\nTraining skipped")
# MEASURES
metrics = [
metric.DiceCoefficient(),
metric.HausdorffDistance(percentile=100),
metric.VolumeSimilarity(),
]
labels = {i: name for i, name in enumerate(args.get("CLASSES_NAME"))}
evaluator = eval_.SegmentationEvaluator(metrics, labels)
# PREDICTIONS
lightning_model.eval()
def make_predictions_over_subject_set(subject,
list_of_predictions,
dataloader_type="train"):
input = subject['image'][tio.DATA].to(lightning_model.device)
# Make sure there is a channel and a group dimension when needed
input = input.unsqueeze(0)
if args.get("GROUP"):
input = input.unsqueeze(1)
prediction_for_subject = lightning_model.unet(input)
subject.add_image(
tio.LabelMap(tensor=prediction_for_subject[0, :, :, :, :]),
'prediction')
list_of_predictions[dataloader_type].append(subject)
list_of_predictions = {"train": [], "val": [], "test": []}
datasets = {
"train": data.train_set,
"test": data.test_set,
"val": data.val_set
}
with torch.no_grad():
for type_loader, subjects_dataset in datasets.items():
print(f" --- PREDICTING {type_loader} --- ")
for subject in subjects_dataset:
make_predictions_over_subject_set(subject,
list_of_predictions,
dataloader_type=type_loader)
logger.info("Finished PREDICTING\n")
# EVALUATING
Path(f"results/{log_name}").mkdir(parents=True, exist_ok=True)
for type_predictions, list_of_subjects in list_of_predictions.items():
print(f" --- EVALUATING {type_predictions} --- ")
logger.info(f" --- EVALUATING {type_predictions} --- ")
# Making sure that we only try to evaluate on test when there are test labels
should_evaluate_and_plot_normaly = (type_predictions != "test") or (
args.get("TEST_HAS_LABELS"))
for subject in list_of_subjects:
# Path variables
field = 'label' if should_evaluate_and_plot_normaly else 'image'
filename = subject[field]['filename']
folder_name = 'labelsTs' if type_predictions == "test" else "labelsTr"
subject_id = f"{type_predictions}-{filename}"
path = f"results/{log_name}/{filename}"
Path(path).mkdir(parents=True, exist_ok=True)
# SAVING THE SEGMENTATION
header = nib.load(
f'{args.get("PATH_TO_DATA")}/{folder_name}/{filename}').header
inverted_subject = subject.apply_inverse_transform()
prediction_to_save = inverted_subject['prediction'][
tio.DATA].argmax(dim=0)
affine = inverted_subject['image'][tio.AFFINE]
saved_prediction = nib.Nifti1Image(prediction_to_save.numpy(),
affine=affine,
header=header)
nib.save(saved_prediction, f"{path}/{subject_id}")
# EVALUATION
if should_evaluate_and_plot_normaly:
sub_label = subject['label'][tio.DATA].argmax(dim=0).numpy()
sub_prediction = subject['prediction'][tio.DATA].argmax(
dim=0).numpy()
evaluator.evaluate(sub_prediction, sub_label, subject_id)
# EXAMPLE SLICE PLOTTING
plot_middle_slice(subject,
nb_of_classes=len(args.get("CLASSES_NAME")),
cmap=args.get("CMAP"),
save_name=f"{path}/{subject_id}",
classes_names=args.get("CLASSES_NAME"),
with_labels=should_evaluate_and_plot_normaly)
logger.info("Finished EVALUATING\n")
# SAVING METRICS
functions = {
'MEAN': np.mean,
'STD': np.std,
'MAX': np.amax,
'MIN': np.amin
}
writer.ConsoleStatisticsWriter(functions=functions).write(
evaluator.results)
writer.CSVWriter(f"results/{log_name}/metrics_report.csv").write(
evaluator.results)
writer.CSVStatisticsWriter(
f"results/{log_name}/metrics_report_summary.csv",
functions=functions).write(evaluator.results)
logger.info("Saved metrics to files")
if __name__ == "__main__":
# LOGGER
logger = configure_and_return_logger(
'c_unet/utils/logging/loggingConfig.yml')
# ARGS
args = {}
args["LOAD_FROM_CHECKPOINTS"] = config("LOAD_FROM_CHECKPOINTS",
default=False,
cast=bool)
args["CHECKPOINTS_PATH"] = config("CHECKPOINTS_PATH",
default=None,
cast=str)
args["SHOULD_TRAIN"] = config("SHOULD_TRAIN", default=True, cast=bool)
args["CLASSES_NAME"] = config("CLASSES_NAME").split(", ")
args["PATH_TO_DATA"] = config("PATH_TO_DATA")
args["SUBSET_NAME"] = config("SUBSET_NAME")
args["BATCH_SIZE"] = config("BATCH_SIZE", cast=int)
args["NUM_WORKERS"] = config("NUM_WORKERS", cast=int)
args["TEST_HAS_LABELS"] = config("TEST_HAS_LABELS",
default=False,
cast=bool)
args["SEED"] = config("SEED", default=1, cast=int)
args["GROUP"] = config("GROUP", default=None)
args["GROUP_DIM"] = config("GROUP_DIM", cast=int)
args["IN_CHANNELS"] = 1
args["OUT_CHANNELS"] = config("OUT_CHANNELS", cast=int)
args["FINAL_ACTIVATION"] = config("FINAL_ACTIVATION", default="softmax")
args["NONLIN"] = config("NONLIN", default="leaky-relu")
args["NORMALIZATION"] = config("NORMALIZATION", default="bn")
args["DIVIDER"] = config("DIVIDER", cast=int)
args["MODEL_DEPTH"] = config("MODEL_DEPTH", cast=int)
args["DROPOUT"] = config("DROPOUT", cast=float)
args["LOGS_DIR"] = config("LOGS_DIR")
args["LOG_NAME"] = config("LOG_NAME")
args["EARLY_STOPPING"] = config("EARLY_STOPPING", default=False, cast=bool)
args["LEARNING_RATE"] = config("LEARNING_RATE", default=1e-3, cast=float)
args["HISTOGRAMS"] = config("HISTOGRAMS", default=False, cast=bool)
args["GPUS"] = [config("GPUS", default=1, cast=int)]
args["PRECISION"] = config("PRECISION", default=32, cast=int)
args["MAX_EPOCHS"] = config("MAX_EPOCHS", default=30, cast=int)
args["LOG_STEPS"] = config("LOG_STEPS", default=5, cast=int)
args["GRADIENT_CLIP"] = config("GRADIENT_CLIP", default=0.5, cast=float)
args["CMAP"] = config("CMAP", default="Oranges")
main(logger, args)