-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuro_DB_beta.m
455 lines (327 loc) · 19 KB
/
Neuro_DB_beta.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
function [CellInfo] = Neuro_DB_beta(mouse,dateRec)
%%%%
% Incorporate Fieldtrip import and layout ideas
%%%%
BaseLoc = 'G:\Tetrode_DATA\Days of Recording\';
expectedNames = {'J303','J306','J311','J313','J314','J318','J319','J320'};
validateattributes(mouse,{'char'},{'nonempty'},mfilename,'mouseName', 1)
validateattributes(dateRec,{'char'},{'nonempty'},mfilename,'recdate', 2)
mouseName = validatestring(mouse,expectedNames,mfilename,'mouseName',1);
BehNLXLoc_all = strcat(BaseLoc,mouseName,'\Behavior_nlx\');
NeuroLoc_all = strcat(BaseLoc,mouseName,'\Neurophysiology\');
cd(BehNLXLoc_all);
poss_dates = cellstr(ls);
recdate = validatestring(dateRec,poss_dates,mfilename,'recdate', 2);
BehNLXLoc_date = strcat(BehNLXLoc_all,recdate);
NeuroLoc_date = strcat(NeuroLoc_all,recdate);
cd(NeuroLoc_date)
load('trialsTOincl.mat') % file name is trials_2_incl
run_analysis = isTfiles(NeuroLoc_date);
switch run_analysis
case 0
warndlg('Need to Cluster Data','User Error')
case 1
ftypes = {'t','ntt'};
fileS = struct;
for fi = 1:length(ftypes);
fileLook = strcat('*.',ftypes{fi});
dirFiles = dir(fileLook);
for ni = 1:length(dirFiles)
fileS.(ftypes{fi}){ni,1} = dirFiles(ni).name;
end
end
% Run through leads
for clustI = 1:length(fileS.t)
% ADD MULTIBAR **** Examine function
CellInfo = struct;
getClustNum = fileS.t{clustI}(5);
getTetNum = fileS.t{clustI}(3);
cellName = strcat('Cell_',mouseName,'_',recdate,'_t',getTetNum,'_c',getClustNum);
cd(NeuroLoc_date)
NTT_file = char(strcat('TT',getTetNum,'.ntt'));
load(strcat('TT',num2str(getTetNum),'cut.mat'))
clustCut = eval(strcat('TT',num2str(getTetNum)));
fprintf('CUT FILE for cluster %d on tetrode %d in mouse %s recorded on %s evaluated...\n',...
str2double(getClustNum), str2double(getTetNum), mouseName, recdate);
[~, ~, ~, ~, Samples, Header] = ...
Nlx2MatSpike(NTT_file, [1 1 1 1 1], 1, 1, [] );
ADBitVolts = Get_Vals_Header_regexp(Header,'-ADB[a-z]+');
InputRange = Get_Vals_Header_regexp(Header,'-InputR[a-z]+');
ThreshValues = Get_Vals_Header_regexp(Header,'-Thresh[a-z]+');
Inverted = Get_Vals_Header_regexp(Header,'-InputI[a-z]+');
DualThresh = Get_Vals_Header_regexp(Header,'-Dual[a-z]+');
% ADBitVolts = Get_Vals_Header(Header,'ADBitVolt');
% InputRange = Get_Vals_Header(Header,'InputRange');
% ThreshValues = Get_Vals_Header(Header,'ThreshVal');
% Inverted = Get_Vals_Header(Header,'InputInverted');
% DualThresh = Get_Vals_Header(Header,'DualThresholding');
fprintf('HEADER for cluster %d on tetrode %d in mouse %s recorded on %s evaluated...\n',...
str2double(getClustNum), str2double(getTetNum), mouseName, recdate);
disabledLeads = Neuro_DB_CheckLeads(NeuroLoc_date);
% Remember Inactive leads will be 1:4 not 0:3 (NLX style)
InactiveLeads = GetLeadVec(str2double(getTetNum),disabledLeads);
cluSamples = Samples(:,:,clustCut == str2double(getClustNum));
convert_mat = repmat(ADBitVolts, [size(cluSamples, 1), 1, size(cluSamples, 3)]);
microVolts = cluSamples .* convert_mat * 10^6;
if Inverted == 1;
Clust_Waves = microVolts * -1;
else
Clust_Waves = microVolts;
end
load(strcat('TT',num2str(getTetNum),'_',getClustNum,'_clqual.mat'));
ID = CluSep.IsolationDist;
LR = CluSep.Lratio;
allLeads = 1:4;
disindex = allLeads(1:4 ~= InactiveLeads);
fprintf('TIMESTAMPS for cluster %d on tetrode %d in mouse %s recorded on %s evaluated...\n',...
str2double(getClustNum), str2double(getTetNum), mouseName, recdate);
fprintf('DISABLED LEADS for cluster %d on tetrode %d in mouse %s recorded on %s evaluated...\n',...
str2double(getClustNum), str2double(getTetNum), mouseName, recdate);
features = struct;
for fi = 1:length(disindex)
tempWaves = squeeze(Clust_Waves(:,disindex(fi),:));
features.Peak.(strcat('L',num2str(disindex(fi)))) =...
max(tempWaves)';
features.Valley.(strcat('L',num2str(disindex(fi)))) =...
min(tempWaves)';
features.Energy.(strcat('L',num2str(disindex(fi)))) =...
trapz(abs(tempWaves))';
featsForPCA = horzcat(features.Peak.(strcat('L',num2str(disindex(fi)))),...
features.Valley.(strcat('L',num2str(disindex(fi)))),...
features.Energy.(strcat('L',num2str(disindex(fi)))));
features.WavePC1.(strcat('L',num2str(disindex(fi)))) =...
pca(featsForPCA);
% features.WaveSimIndex.(strcat('L',num2str(disindex(fi)))) =...
% BrayCurtisIndex(tempWaves,disindex(fi));
features.FSDE_Values.(strcat('L',num2str(disindex(fi)))) =...
FSDE_Method(tempWaves);
end
[features.WaveFitParams, features.WaveSumDS] = WaveFormFit(disindex,Clust_Waves);
fprintf('WAVEFORM FEATURES for cluster %d on tetrode %d in mouse %s recorded on %s calculated...\n',...
str2double(getClustNum), str2double(getTetNum), mouseName, recdate);
% Experiment
TF_2013 = {'J303','J306','J311','J313','J314'};
TF_2014 = {'J318','J319','J320','J323','J330','J331'};
TCF_2014 = {'J311','J313','J314','J318','J319'};
expNames = {TF_2013,TF_2014,TCF_2014};
expCategs = {'Thompson and Felsen 2013','Thompson and Felsen 2014',...
'Thompson Costabile Felsen 2014'};
expVec = false(1,3);
for expi = 1:3
expVec(expi) = ismember(mouse,(expNames{expi}));
end
Expermt = expCategs(expVec);
% GET EVERYTHING DONE IN NEUROPHYSIOLOGY BEFORE MOVING ON
% Use date and mouse number to search Settings folder on
% desktop; if file cannot be located search and copyfile from Z
% drive: extract settings of interest
localSettings = strcat('G:\All_Raw_Behavior\Settings\',mouse);
ZSettings = strcat('Z:\Behavior\Behavior\Settings\John\',mouse);
setName = strcat('settings_@Mix2afc_John_',mouse,'_',recdate,'a.mat');
cd(localSettings)
if ~exist(setName,'file')
cd(ZSettings)
if ~exist(mouseSet,'dir')
SLos = NaN;
else
copyfile(setName,localSettings)
cd(localSettings)
load(setName)
end
else
load(setName)
setInfo = saved;
if strcmp(setInfo.OdorParameters_osp_mode,'Short/Long')
long_mros = setInfo.OdorParameters_m2;
long_rng = setInfo.OdorParameters_r2;
short_mros = setInfo.OdorParameters_m1;
short_rng = setInfo.OdorParameters_r1;
RngmrosS = [short_mros + short_rng , long_mros - long_rng];
SLos = mat2dataset(RngmrosS,'VarNames',{'Short','Long'});
else
SLos = NaN;
end
end
cd(BehNLXLoc_date)
load(strcat('tb_',mouseName,'_',recdate,'.mat'))
spkName = strcat('spk_tt',getTetNum,'_clust',getClustNum,'.mat');
load(spkName)
spktms = spk_fi/1000000;
% For ISI calculation
msSpktms = spktms*1000; % convert spike times to milliseconds
spkIntervals = diff(msSpktms);
spkLogtimes = log(spkIntervals);
% for plotting: hist(spkLogtimes,100);
% for trouble shooting: ps = numel(find(spkIntervals < 1))/numel(spkIntervals)
perISIviolate = numel(find(spkLogtimes < 0))/numel(spkLogtimes);
% Taskbase stuff
trStart = taskbase.start_nlx(1:end-1);
epochNames = {'PreOdor','OdorSamp','Move','Reward','Baseline'};
requiredTime = taskbase.req_time;
midSLos = (SLos.Short + SLos.Long)/2;
shortTrials = requiredTime < midSLos;
longTrials = requiredTime > midSLos;
preOEpoch = [taskbase.OdorPokeIn taskbase.DIO];
odorSEpoch = [taskbase.DIO + 0.1 taskbase.OdorPokeOut];
moveEpoch = [taskbase.OdorPokeOut taskbase.WaterPokeIn];
rewEpoch = [taskbase.WaterPokeIn taskbase.WaterPokeIn + 0.75];
allEpoch = [taskbase.OdorPokeIn taskbase.WaterPokeIn + 0.75];
epochSS = {preOEpoch,odorSEpoch,moveEpoch,rewEpoch,allEpoch};
minStimID = min(taskbase.stimID);
maxStimID = max(taskbase.stimID);
stimIDs = minStimID:maxStimID;
if stimIDs(1) == 8
taskbase.stimID = taskbaase.stimID - 7;
end
behEvents = {'ovo','opo','wpi','wvo','wpo'};
eventTimes = [taskbase.DIO taskbase.OdorPokeOut taskbase.WaterPokeIn taskbase.WaterDeliv taskbase.WaterPokeOut];
% sec_eventTimes = [taskbase.DIO taskbase.OdorPokeOut taskbase.WaterPokeIn taskbase.WaterDeliv taskbase.WaterPokeOut taskbase.NextOdorPokeIn];
fr_DBs = {'EasyCorrect','HardCorrect','EasyError','HardError',...
'LeftCorrect','RightCorrect','EasyAll','HardAll','LeftError',...
'RightError','Fiftys'};
TrialAnalyses = struct;
TrialIDIndex = struct;
for dbi = 1:length(fr_DBs)
switch dbi
case 1
trialIndex = find(ismember(taskbase.stimID,[1 2 5 6]) &...
taskbase.reward == 1 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 2
trialIndex = find(ismember(taskbase.stimID,[3 4]) &...
taskbase.reward == 1 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 3
trialIndex = find(ismember(taskbase.stimID,[1 2 5 6]) &...
taskbase.reward == 0 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 4
trialIndex = find(ismember(taskbase.stimID,[3 4]) &...
taskbase.reward == 0 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 5
trialIndex = find(ismember(taskbase.stimID,[2 4 6]) &...
taskbase.reward == 1 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 6
trialIndex = find(ismember(taskbase.stimID,[1 3 5]) &...
taskbase.reward == 1 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 7
trialIndex = find(ismember(taskbase.stimID,[1 2 5 6]) &...
~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 8
trialIndex = find(ismember(taskbase.stimID,[3 4]) &...
~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 9
trialIndex = find(ismember(taskbase.stimID,[2 4 6]) &...
taskbase.reward == 0 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 10
trialIndex = find(ismember(taskbase.stimID,[1 3 5]) &...
taskbase.reward == 0 & ~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
case 11
trialIndex = find(ismember(taskbase.stimID,7) &...
~isnan(trStart));
TrialIDIndex.(fr_DBs{dbi}) = trialIndex;
end
[Ref_SpkTimes.(fr_DBs{dbi}).opi, Ref_SpkTimes.(fr_DBs{dbi}).TrialIndices,...
Ref_SpkTimes.(fr_DBs{dbi}).RefTimes] = Neuro_DB_raster(spktms,...
trStart(trialIndex), taskbase.OdorPokeIn(trialIndex));
tmp_trialNums = Ref_SpkTimes.(fr_DBs{dbi}).TrialIndices;
ref_trialNums = zeros(length(tmp_trialNums),1);
for i = 1:length(tmp_trialNums)
ref_trialNums(i,1) = trialIndex(tmp_trialNums(i));
end
Ref_SpkTimes.(fr_DBs{dbi}).TrialIndices = ref_trialNums;
% for each trial index add ref time and subtract align time
% which is derived from adding trialstart time and event
% time
newReftimes = [];
for evi = 1:length(behEvents)
tempAllSpks = Ref_SpkTimes.(fr_DBs{dbi}).opi;
tempReftimes = Ref_SpkTimes.(fr_DBs{dbi}).RefTimes;
for trii = 1:length(trialIndex)
refIndex = ref_trialNums == trialIndex(trii);
tempSpikes = tempAllSpks(refIndex);
zeroedSpikes = tempSpikes + tempReftimes(refIndex);
alignSpikes = zeroedSpikes - (eventTimes(trialIndex(trii),evi) + trStart(trialIndex(trii)));
newReftimes = [newReftimes; alignSpikes];
end
Ref_SpkTimes.(fr_DBs{dbi}).(behEvents{evi}) = newReftimes;
[Ref_PSTH.(fr_DBs{dbi}).(behEvents{evi}),...
PSTH_Info.(fr_DBs{dbi}).(behEvents{evi})] =...
Neuro_DB_psth(newReftimes, Ref_SpkTimes.(fr_DBs{dbi}).TrialIndices);
end
for epi = 1:length(epochSS)
for tri = 1:length(trialIndex)
tempTr = trialIndex(tri);
stEp = epochSS{1,epi}(tempTr,1);
enEp = epochSS{1,epi}(tempTr,2);
epdur = enEp - stEp;
if isempty(find(spktms > trStart(tempTr) + stEp & spktms < trStart(tempTr) + enEp))
TrialAnalyses.(fr_DBs{dbi})(tri,epi) = NaN;
else
TrialAnalyses.(fr_DBs{dbi})(tri,epi) = numel(find(spktms >...
trStart(tempTr) + stEp & spktms < trStart(tempTr) + enEp))/epdur;
end
end
end
trial_DS = mat2dataset(TrialAnalyses.(fr_DBs{dbi}),'VarNames',epochNames);
TrialAnalyses.(fr_DBs{dbi}) = trial_DS;
end
% Cell Summary
trialTypeNum = [0 1];
trials_to_in = trials_2_incl{clustI};
align_ind = 3;
window = [-3 3];
spk_file = spk_fi;
behav_file = taskbase;
for csi = 1:2
switch csi
case 1
by_mixture_ratio_flag = trialTypeNum(csi);
[Current.raster_info] = CellSummary_NDB(behav_file, spk_file, align_ind, window,...
by_mixture_ratio_flag, trials_to_in);
Current.selectivity_info = Selectivity_Analysis_NDB(Current.raster_info);
case 2
by_mixture_ratio_flag = trialTypeNum(csi);
[Previous.raster_info] = CellSummary_NDB(behav_file, spk_file, align_ind, window,...
by_mixture_ratio_flag, trials_to_in);
Previous.selectivity_info = Selectivity_Analysis_NDB(Previous.raster_info);
end
end
% CHECK EPOCHS ANALYZED
CellInfo.MouseName = mouseName;
CellInfo.RecordDate = recdate;
CellInfo.Tetrode = getTetNum;
CellInfo.Cluster = getClustNum;
CellInfo.ADBitVolts = ADBitVolts;
CellInfo.InputRange = InputRange;
CellInfo.ThreshValues = ThreshValues;
CellInfo.Inverted = Inverted;
CellInfo.DualThreshold = DualThresh;
CellInfo.DisabledLeads = InactiveLeads;
CellInfo.ClustWaves = Clust_Waves;
CellInfo.SpikeTimes = spktms;
CellInfo.LRatio = LR;
CellInfo.IsolationDistance = ID;
CellInfo.Features = features;
CellInfo.Experiment = Expermt;
CellInfo.WaveIndex = WaveSimIndex;
CellInfo.ShortLong_Info = SLos;
CellInfo.ISIViolations = perISIviolate;
cd('G:\Tetrode_DATA\Days of Recording\Neuron_Activity_Info_Database');
save(cellName,'-struct','CellInfo');
end
end
% Last things to do:
% Get short/long data in order RASTERS ##**!!**##
% Make sure all outputs in structure are accounted for
% Place fprintf points at each data analysis junction
% Future things
% 1. Calculate values for Autocorrelation
% 2. Turn CellSelectivity into switch construction