From f0fa91c14249266ee53443a8f425d5f67b527c6e Mon Sep 17 00:00:00 2001 From: MOHAMMAD TORABI <72619172+mtorabi59@users.noreply.github.com> Date: Sat, 9 Dec 2023 14:13:11 +0330 Subject: [PATCH] FC run_script (#183) * add run_script to FC assessment * delete FC_sge.sh * apply the changes --- .../extractors/fmriprep/fmriprep2func_conn.py | 180 ------------ nipoppy/extractors/fmriprep/run_FC.py | 277 ++++++++++++++++++ .../fmriprep/sample_FC_configs.json | 14 + nipoppy/extractors/fmriprep/sample_FC_sge.sh | 30 ++ 4 files changed, 321 insertions(+), 180 deletions(-) delete mode 100644 nipoppy/extractors/fmriprep/fmriprep2func_conn.py create mode 100644 nipoppy/extractors/fmriprep/run_FC.py create mode 100644 nipoppy/extractors/fmriprep/sample_FC_configs.json create mode 100644 nipoppy/extractors/fmriprep/sample_FC_sge.sh diff --git a/nipoppy/extractors/fmriprep/fmriprep2func_conn.py b/nipoppy/extractors/fmriprep/fmriprep2func_conn.py deleted file mode 100644 index 610a6d7d..00000000 --- a/nipoppy/extractors/fmriprep/fmriprep2func_conn.py +++ /dev/null @@ -1,180 +0,0 @@ -from nilearn.maskers import NiftiLabelsMasker, NiftiSpheresMasker -from nilearn.interfaces.fmriprep import load_confounds -from nilearn import datasets -from nilearn import plotting -import numpy as np -from copy import deepcopy -import os -import warnings - -warnings.simplefilter('ignore') - - -### paths to files -# root = '/Users/mte/Documents/McGill/JB/QPN/data/' -# output_root = '/Users/mte/Documents/McGill/JB/QPN/FC_output/' - -root = '../../../../pd/qpn/derivatives/fmriprep/v20.2.7/fmriprep/' -output_root = '../outputs/FC_outputs/' - -### parameters - -reorder_conn_mat = True -visualize = False -brain_atlas = 'schaefer' # schaefer or seitzman -confound_strategy = 'no_motion_no_gsr' # no_motion or no_motion_no_gsr - -test_output = False - -### Load Atlas - -## schaefer -if brain_atlas=='schaefer': - parc = datasets.fetch_atlas_schaefer_2018(n_rois=100) - atlas_filename = parc.maps - labels = parc.labels - # The list of labels does not contain ‘Background’ by default. - # To have proper indexing, you should either manually add ‘Background’ to the list of labels: - # Prepend background label - labels = np.insert(labels, 0, 'Background') - # create the masker for extracting time series - masker = NiftiLabelsMasker(labels_img=atlas_filename, standardize=True) -## seitzman -if brain_atlas=='seitzman': - parc = datasets.fetch_coords_seitzman_2018() - atlas_filename = parc['rois'] - radius = parc['radius'] - labels = parc['regions'] - # create the masker for extracting time series - masker = NiftiSpheresMasker(seeds=atlas_filename, radius=radius, standardize=True) - -### Load Subjects -ALL_SUBJECTS = os.listdir(root) -ALL_SUBJECTS = [i for i in ALL_SUBJECTS if ('sub' in i) and (not '.html' in i)] -ALL_SUBJECTS.sort() -print('*** '+ str(len(ALL_SUBJECTS)) + ' subjects were found.') -for subj in ALL_SUBJECTS: - print('*** running '+subj) - ### output dictionary - FC = {} - - ### functional data - bold = root + subj + '/ses-01/func/'+ subj +'_ses-01_task-rest_run-1_space-MNI152NLin2009cAsym_res-2_desc-preproc_bold.nii.gz' - - ### Confounds - - if confound_strategy=='no_motion': - confounds_simple, sample_mask = load_confounds( - bold, - strategy=["high_pass", "motion", "wm_csf"], - motion="basic", wm_csf="basic" - ) - if confound_strategy=='no_motion_no_gsr': - confounds_minimal_no_gsr, sample_mask = load_confounds( - bold, - strategy=["high_pass", "motion", "wm_csf", "global_signal"], - motion="basic", wm_csf="basic", global_signal="basic" - ) - - ### extract the timeseries - time_series = masker.fit_transform(bold, - confounds=confounds_minimal_no_gsr, - sample_mask=sample_mask) - - FC['roi_labels'] = labels[1:] # Be careful that the indexing should be offset by one - - ### functional connectivity assessment - ## correlation - - from nilearn.connectome import ConnectivityMeasure - correlation_measure = ConnectivityMeasure(kind='correlation') - correlation_matrix = correlation_measure.fit_transform([time_series])[0] - FC['correlation'] = deepcopy(correlation_matrix) - - # Plot the correlation matrix - - if visualize: - # Make a large figure - # Mask the main diagonal for visualization: - np.fill_diagonal(correlation_matrix, 0) - # The labels we have start with the background (0), hence we skip the - # first label - # matrices are ordered for block-like representation - plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], - vmax=1, vmin=-1, title="Correlation Confounds regressed", - reorder=reorder_conn_mat) - - ## sparse inverse covariance - try: - from sklearn.covariance import GraphicalLassoCV - except ImportError: - # for Scitkit-Learn < v0.20.0 - from sklearn.covariance import GraphLassoCV as GraphicalLassoCV - - estimator = GraphicalLassoCV() - estimator.fit(time_series) - - # The covariance can be found at estimator.covariance_ - covariance_mat = estimator.covariance_ - FC['covariance'] = deepcopy(covariance_mat) - if visualize: - np.fill_diagonal(covariance_mat, 0) - plotting.plot_matrix(covariance_mat, labels=labels[1:], - figure=(9, 7), vmax=1, vmin=-1, - title='Covariance', reorder=reorder_conn_mat) - - precision_mat = -estimator.precision_ - FC['precision'] = deepcopy(precision_mat) - if visualize: - np.fill_diagonal(precision_mat, 0) - plotting.plot_matrix(precision_mat, labels=labels[1:], - figure=(9, 7), vmax=1, vmin=-1, - title='Sparse inverse covariance', reorder=reorder_conn_mat) - if visualize: - plotting.show() - - ### save output - np.save(output_root+subj+'_FC_output.npy', FC) - -print('*** FC measurement finished successfully.') - -### test outputs -if test_output: - # calc average static FC - - metric = 'precision' # correlation , covariance , precision - dir = './FC_outputs/' - - ALL_RECORDS = os.listdir(dir) - ALL_RECORDS = [i for i in ALL_RECORDS if 'FC_output' in i] - ALL_RECORDS.sort() - print(str(len(ALL_RECORDS))+' subjects were found.') - - FC_all = list() - FC_MNI = list() - FC_PD = list() - for subj in ALL_RECORDS: - FC = np.load(dir+subj,allow_pickle='TRUE').item() - FC_all.append(FC[metric]) - if 'MNI' in subj: - FC_MNI.append(FC[metric]) - if 'PD' in subj: - FC_PD.append(FC[metric]) - print(str(len(FC_MNI))+' MNI subjects were found.') - print(str(len(FC_PD))+' PD subjects were found.') - avg_FC = np.mean(np.array(FC_all), axis=0) - avg_FC_MNI = np.mean(np.array(FC_MNI), axis=0) - avg_FC_PD = np.mean(np.array(FC_PD), axis=0) - np.fill_diagonal(avg_FC, 0) - plotting.plot_matrix(avg_FC, labels=FC['roi_labels'], - figure=(9, 7), vmax=1, vmin=-1, - title=metric+' ALL', reorder=False) - np.fill_diagonal(avg_FC_MNI, 0) - plotting.plot_matrix(avg_FC_MNI, labels=FC['roi_labels'], - figure=(9, 7), vmax=1, vmin=-1, - title=metric+' MNI', reorder=False) - np.fill_diagonal(avg_FC_PD, 0) - plotting.plot_matrix(avg_FC_PD, labels=FC['roi_labels'], - figure=(9, 7), vmax=1, vmin=-1, - title=metric+' PD', reorder=False) - plotting.show() \ No newline at end of file diff --git a/nipoppy/extractors/fmriprep/run_FC.py b/nipoppy/extractors/fmriprep/run_FC.py new file mode 100644 index 00000000..540be208 --- /dev/null +++ b/nipoppy/extractors/fmriprep/run_FC.py @@ -0,0 +1,277 @@ +import argparse +from copy import deepcopy +import json +import nipoppy.workflow.logger as my_logger +import logging +from nilearn.maskers import NiftiLabelsMasker +from nilearn.interfaces.fmriprep import load_confounds +from nilearn import datasets +import numpy as np +import os +import warnings + +warnings.simplefilter('ignore') + + +def extract_timeseries(func_file, brain_atlas, confound_strategy): + """ + Extract timeseries from a given functional file using a given brain atlas + func_file: + path to the nifti file containing the functional data + This path should be in the fmriprep output directory + The functional data is assumed to be preprocessed by fmriprep and transformed to MNI space + confound_strategy: + 'none': no confound regression + 'no_motion': confound regression with no motion parameters + 'no_motion_no_gsr': confound regression with no motion parameters and no global signal regression + if confound_strategy is no_motion or no_motion_no_gsr, the associated confound files should be + in the same directory as func_file + brain_atlas: + for now only supports: + 'schaefer_100', 'schaefer_200', 'schaefer_300', 'schaefer_400', 'schaefer_500', 'schaefer_600', 'schaefer_800', 'schaefer_1000' + 'DKT' + if brain_atlas is not 'schaefer', then it is assumed to be dkt_atlas file + """ + ### Load Atlas + ## schaefer + if 'schaefer' in brain_atlas: + n_rois = int(brain_atlas[brain_atlas.find('schaefer')+9:]) + parc = datasets.fetch_atlas_schaefer_2018(n_rois=n_rois) + atlas_filename = parc.maps + labels = parc.labels + # The list of labels does not contain ‘Background’ by default. + # To have proper indexing, you should either manually add ‘Background’ to the list of labels: + # Prepend background label + labels = np.insert(labels, 0, 'Background') + # create the masker for extracting time series + masker = NiftiLabelsMasker(labels_img=atlas_filename, standardize=True) + ## DKT + else: + atlas_filename = brain_atlas + labels = None + # create the masker for extracting time series + # if file was not found, raise error + if not os.path.isfile(atlas_filename): + raise ValueError('atlas_filename not found') + masker = NiftiLabelsMasker(labels_img=atlas_filename, standardize=True) + + ### extract the timeseries + if confound_strategy=='none': + time_series = masker.fit_transform(func_file) + elif confound_strategy=='no_motion': + confounds, sample_mask = load_confounds( + func_file, + strategy=["high_pass", "motion", "wm_csf"], + motion="basic", wm_csf="basic" + ) + time_series = masker.fit_transform( + func_file, + confounds=confounds, + sample_mask=sample_mask + ) + elif confound_strategy=='no_motion_no_gsr': + confounds, sample_mask = load_confounds( + func_file, + strategy=["high_pass", "motion", "wm_csf", "global_signal"], + motion="basic", wm_csf="basic", global_signal="basic" + ) + time_series = masker.fit_transform( + func_file, + confounds=confounds, + sample_mask=sample_mask + ) + else: + raise ValueError('confound_strategy not recognized') + + if labels is None: + labels = ['region_'+str(i) for i in range(time_series.shape[1])] + labels = np.insert(labels, 0, 'Background') + + return time_series, labels + + +def assess_FC(time_series, labels, metric_list=['correlation']): + """ + Assess functional connectivity using Nilearn + metric_list: + 'correlation' + 'precision' + """ + ### output dictionary + FC = {} + + FC['roi_labels'] = labels[1:] # Be careful that the indexing should be offset by one + + ### functional connectivity assessment + ## correlation + if 'correlation' in metric_list: + from nilearn.connectome import ConnectivityMeasure + correlation_measure = ConnectivityMeasure(kind='correlation') + correlation_matrix = correlation_measure.fit_transform([time_series])[0] + FC['correlation'] = deepcopy(correlation_matrix) + + ## sparse inverse covariance + if 'precision' in metric_list: + try: + from sklearn.covariance import GraphicalLassoCV + except ImportError: + # for Scitkit-Learn < v0.20.0 + from sklearn.covariance import GraphLassoCV as GraphicalLassoCV + + estimator = GraphicalLassoCV() + estimator.fit(time_series) + + # The covariance can be found at estimator.covariance_ + covariance_mat = estimator.covariance_ + FC['covariance'] = deepcopy(covariance_mat) + + precision_mat = -estimator.precision_ + FC['precision'] = deepcopy(precision_mat) + + return FC + +def run_FC( + participant_id: str, + session_id: str, + fmriprep_dir, + DKT_dir, + FC_dir, + brain_atlas_list, + confound_strategy, + metric_list, + task, + run, + space, + logger: logging.Logger, +): + """ Assess functional connectivity using Nilearn""" + + logger.info("Running FC assessment...") + logger.info("-"*50) + + try: + for brain_atlas in brain_atlas_list: + logger.info('******** running ' + brain_atlas) + ### extract time series + func_file = f"{fmriprep_dir}/{participant_id}/ses-{session_id}/func/{participant_id}_ses-{session_id}_{task}_{run}_{space}_desc-preproc_bold.nii.gz" + if 'schaefer' in brain_atlas: + time_series, labels = extract_timeseries(func_file, brain_atlas, confound_strategy) + elif brain_atlas=='DKT': + dkt_atlas = f"{DKT_dir}/{participant_id}/ses-{session_id}/anat/{participant_id}_ses-{session_id}_run-{run}_{space[:-6]}_atlas-DKTatlas+aseg_dseg.nii.gz" # space[:-6] removes the '_res2' suffix + time_series, labels = extract_timeseries(func_file, dkt_atlas, confound_strategy) + else: + raise ValueError('brain_atlas not supported') + + ### assess FC + FC = assess_FC(time_series, labels, metric_list=metric_list) + + ## save output + folder = f"{FC_dir}/output/{participant_id}/ses-{session_id}/" + if not os.path.exists(folder): + os.makedirs(folder) + np.save(f"{folder}/{participant_id}_ses-{session_id}_{task}_{space}_FC_{brain_atlas}.npy", FC) + except Exception as e: + logger.error(f"FC assessment failed with exceptions: {e}") + + logger.info(f"Successfully completed FC assessment for participant: {participant_id}") + logger.info("-"*75) + logger.info("") + + +def run(participant_id: str, + global_configs, + FC_configs, + session_id: str, + output_dir: str, + logger=None +): + """ Runs fmriprep command + """ + DATASET_ROOT = global_configs["DATASET_ROOT"] + FMRIPREP_VERSION = global_configs["PROC_PIPELINES"]["fmriprep"]["VERSION"] + + confound_strategy = FC_configs["confound_strategy"] + metric_list = FC_configs["metric_list"] + brain_atlas_list = FC_configs["brain_atlas_list"] + task = FC_configs["task"] + run = FC_configs["run"] + space = FC_configs["space"] + + if metric_list is None: + metric_list = ['correlation'] + if brain_atlas_list is None: + brain_atlas_list = [ + 'schaefer_100', 'schaefer_200', + 'schaefer_300', 'schaefer_400', + 'schaefer_500', 'schaefer_600', + 'schaefer_800', 'schaefer_1000' + ] + if confound_strategy is None: + confound_strategy = 'none' + + log_dir = f"{DATASET_ROOT}/scratch/logs/" + + if logger is None: + log_file = f"{log_dir}/FC.log" + logger = my_logger.get_logger(log_file) + + logger.info("-"*75) + logger.info(f"Using DATASET_ROOT: {DATASET_ROOT}") + logger.info(f"Using participant_id: {participant_id}, session_id:{session_id}") + + if output_dir is None: + output_dir = f"{DATASET_ROOT}/derivatives/" + + fmriprep_dir = f"{DATASET_ROOT}/derivatives/fmriprep/v{FMRIPREP_VERSION}/output" + DKT_dir = f"{DATASET_ROOT}/derivatives/networks/v0.9.0/output" + FC_dir = f"{output_dir}/FC" + + # assess FC + run_FC( + participant_id, + session_id, + fmriprep_dir, + DKT_dir, + FC_dir, + brain_atlas_list, + confound_strategy, + metric_list, + task, + run, + space, + logger, + ) + + +if __name__ == '__main__': + # argparse + HELPTEXT = """ + Script to run FC assessment + """ + + parser = argparse.ArgumentParser(description=HELPTEXT) + + parser.add_argument('--global_config', type=str, help='path to global configs for a given nipoppy dataset') + parser.add_argument('--FC_config', type=str, help='path to FC assessment configs for a given nipoppy dataset') + parser.add_argument('--participant_id', type=str, help='participant id') + parser.add_argument('--session_id', type=str, help='session id for the participant') + parser.add_argument('--output_dir', type=str, default=None, + help='specify custom output dir (if None --> /derivatives)') + + args = parser.parse_args() + + global_config_file = args.global_config + FC_config_file = args.FC_config + participant_id = args.participant_id + session_id = args.session_id + output_dir = args.output_dir # Needed on BIC (QPN) due to weird permissions issues with mkdir + + # Read global configs + with open(global_config_file, 'r') as f: + global_configs = json.load(f) + + # Read FC configs + with open(FC_config_file, 'r') as f: + FC_configs = json.load(f) + + run(participant_id, global_configs, FC_configs, session_id, output_dir) \ No newline at end of file diff --git a/nipoppy/extractors/fmriprep/sample_FC_configs.json b/nipoppy/extractors/fmriprep/sample_FC_configs.json new file mode 100644 index 00000000..abf253db --- /dev/null +++ b/nipoppy/extractors/fmriprep/sample_FC_configs.json @@ -0,0 +1,14 @@ +{ + "confound_strategy": "no_motion", + "metric_list": ["correlation"], + "brain_atlas_list": [ + "schaefer_100", + "schaefer_200", "schaefer_300", + "schaefer_400", "schaefer_500", + "schaefer_600", "schaefer_800", + "schaefer_1000" + ], + "task": "task-rest", + "run": "run-1", + "space": "space-MNI152NLin2009cAsym_res-2" +} \ No newline at end of file diff --git a/nipoppy/extractors/fmriprep/sample_FC_sge.sh b/nipoppy/extractors/fmriprep/sample_FC_sge.sh new file mode 100644 index 00000000..fff681cd --- /dev/null +++ b/nipoppy/extractors/fmriprep/sample_FC_sge.sh @@ -0,0 +1,30 @@ +#!/bin/bash +# +#$ -cwd +#$ -o logs/FC_out.log +#$ -e logs/FC_err.log +#$ -m e +#$ -l h_rt=24:00:00 +#$ -l h_vmem=32G +#$ -q origami.q + +#$ -t 1-10 + +# TODO replace with local paths +source "" + +SUBJECT_LIST="" +SESSION_ID="01" +GLOBAL_CONFIG="/path/to/global_configs.json" +FC_CONFIG="/path/to/FC_config.json" + +echo "Number subjects found: `cat $SUBJECT_LIST | wc -l`" + +SUBJECT_ID=`sed -n "${SGE_TASK_ID}p" $SUBJECT_LIST` +echo "Subject ID: $SUBJECT_ID" + +python "<>/run_FC.py" \ +--global_config $GLOBAL_CONFIG \ +--FC_config $FC_CONFIG \ +--participant_id sub-$SUBJECT_ID \ +--session_id $SESSION_ID \ No newline at end of file