diff --git a/.buildkite/lm-eval-harness/configs/Meta-Llama-3-70B-Instruct.yaml b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-70B-Instruct.yaml new file mode 100644 index 0000000000000..fa6ea236ef04f --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-70B-Instruct.yaml @@ -0,0 +1,11 @@ +# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5 +model_name: "meta-llama/Meta-Llama-3-70B-Instruct" +tasks: +- name: "gsm8k" + metrics: + - name: "exact_match,strict-match" + value: 0.892 + - name: "exact_match,flexible-extract" + value: 0.892 +limit: 250 +num_fewshot: 5 diff --git a/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct-FP8.yaml b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct-FP8.yaml new file mode 100644 index 0000000000000..02668702b83af --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct-FP8.yaml @@ -0,0 +1,11 @@ +# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1 +model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8" +tasks: +- name: "gsm8k" + metrics: + - name: "exact_match,strict-match" + value: 0.756 + - name: "exact_match,flexible-extract" + value: 0.752 +limit: 250 +num_fewshot: 5 diff --git a/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml new file mode 100644 index 0000000000000..fb4b4915ab955 --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml @@ -0,0 +1,11 @@ +# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1 +model_name: "meta-llama/Meta-Llama-3-8B-Instruct" +tasks: +- name: "gsm8k" + metrics: + - name: "exact_match,strict-match" + value: 0.756 + - name: "exact_match,flexible-extract" + value: 0.752 +limit: 250 +num_fewshot: 5 diff --git a/.buildkite/lm-eval-harness/configs/Mixtral-8x7B-Instruct-v0.1.yaml b/.buildkite/lm-eval-harness/configs/Mixtral-8x7B-Instruct-v0.1.yaml new file mode 100644 index 0000000000000..dec9164d1b84e --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/Mixtral-8x7B-Instruct-v0.1.yaml @@ -0,0 +1,11 @@ +# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4 +model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1" +tasks: +- name: "gsm8k" + metrics: + - name: "exact_match,strict-match" + value: 0.616 + - name: "exact_match,flexible-extract" + value: 0.632 +limit: 250 +num_fewshot: 5 diff --git a/.buildkite/lm-eval-harness/configs/models-large.txt b/.buildkite/lm-eval-harness/configs/models-large.txt new file mode 100644 index 0000000000000..127ec5d97bcff --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/models-large.txt @@ -0,0 +1,2 @@ +Meta-Llama-3-70B-Instruct.yaml +Mixtral-8x7B-Instruct-v0.1.yaml diff --git a/.buildkite/lm-eval-harness/configs/models-small.txt b/.buildkite/lm-eval-harness/configs/models-small.txt new file mode 100644 index 0000000000000..273c5482db264 --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/models-small.txt @@ -0,0 +1,2 @@ +Meta-Llama-3-8B-Instruct.yaml +Meta-Llama-3-8B-Instruct-FP8.yaml diff --git a/.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh b/.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh new file mode 100644 index 0000000000000..fdb8ec5393b36 --- /dev/null +++ b/.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh @@ -0,0 +1,46 @@ +#!/bin/bash +# We can use this script to compute baseline accuracy on GSM for transformers. +# +# Make sure you have lm-eval-harness installed: +# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@9516087b81a61d0e220b22cc1b75be76de23bc10 + +usage() { + echo`` + echo "Runs lm eval harness on GSM8k using huggingface transformers." + echo "This pathway is intended to be used to create baselines for " + echo "our automated nm-test-accuracy workflow" + echo + echo "usage: ${0} " + echo + echo " -m - huggingface stub or local directory of the model" + echo " -b - batch size to run the evaluation at" + echo " -l - limit number of samples to run" + echo " -f - number of fewshot samples to use" + echo +} + +while getopts "m:b:l:f:" OPT; do + case ${OPT} in + m ) + MODEL="$OPTARG" + ;; + b ) + BATCH_SIZE="$OPTARG" + ;; + l ) + LIMIT="$OPTARG" + ;; + f ) + FEWSHOT="$OPTARG" + ;; + \? ) + usage + exit 1 + ;; + esac +done + +lm_eval --model hf \ + --model_args pretrained=$MODEL,parallelize=True \ + --tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \ + --batch_size $BATCH_SIZE diff --git a/.buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh b/.buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh new file mode 100644 index 0000000000000..a2876bade8893 --- /dev/null +++ b/.buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh @@ -0,0 +1,51 @@ +#!/bin/bash +# We can use this script to compute baseline accuracy on GSM for vllm. +# We use this for fp8, which HF does not support. +# +# Make sure you have lm-eval-harness installed: +# pip install lm-eval==0.4.2 + +usage() { + echo`` + echo "Runs lm eval harness on GSM8k using huggingface transformers." + echo "This pathway is intended to be used to create baselines for " + echo "our automated nm-test-accuracy workflow" + echo + echo "usage: ${0} " + echo + echo " -m - huggingface stub or local directory of the model" + echo " -b - batch size to run the evaluation at" + echo " -l - limit number of samples to run" + echo " -f - number of fewshot samples to use" + echo " -t - tensor parallel size to run at" + echo +} + +while getopts "m:b:l:f:t:" OPT; do + case ${OPT} in + m ) + MODEL="$OPTARG" + ;; + b ) + BATCH_SIZE="$OPTARG" + ;; + l ) + LIMIT="$OPTARG" + ;; + f ) + FEWSHOT="$OPTARG" + ;; + t ) + TP_SIZE="$OPTARG" + ;; + \? ) + usage + exit 1 + ;; + esac +done + +lm_eval --model vllm \ + --model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE \ + --tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \ + --batch_size $BATCH_SIZE diff --git a/.buildkite/lm-eval-harness/run-tests.sh b/.buildkite/lm-eval-harness/run-tests.sh new file mode 100644 index 0000000000000..b4fdde6dab425 --- /dev/null +++ b/.buildkite/lm-eval-harness/run-tests.sh @@ -0,0 +1,59 @@ +#!/bin/bash + +usage() { + echo`` + echo "Runs lm eval harness on GSM8k using vllm and compares to " + echo "precomputed baseline (measured by HF transformers.)" + echo + echo "usage: ${0} " + echo + echo " -c - path to the test data config (e.g. configs/small-models.txt)" + echo " -t - tensor parallel size" + echo +} + +SUCCESS=0 + +while getopts "c:t:" OPT; do + case ${OPT} in + c ) + CONFIG="$OPTARG" + ;; + t ) + TP_SIZE="$OPTARG" + ;; + \? ) + usage + exit 1 + ;; + esac +done + +# Parse list of configs. +IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < $CONFIG + +for MODEL_CONFIG in "${MODEL_CONFIGS[@]}" +do + LOCAL_SUCCESS=0 + + echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE===" + + export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG} + export LM_EVAL_TP_SIZE=$TP_SIZE + pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$? + + if [[ $LOCAL_SUCCESS == 0 ]]; then + echo "=== PASSED MODEL: ${MODEL_CONFIG} ===" + else + echo "=== FAILED MODEL: ${MODEL_CONFIG} ===" + fi + + SUCCESS=$((SUCCESS + LOCAL_SUCCESS)) + +done + +if [ "${SUCCESS}" -eq "0" ]; then + exit 0 +else + exit 1 +fi diff --git a/.buildkite/lm-eval-harness/test_lm_eval_correctness.py b/.buildkite/lm-eval-harness/test_lm_eval_correctness.py new file mode 100644 index 0000000000000..975841dad1c29 --- /dev/null +++ b/.buildkite/lm-eval-harness/test_lm_eval_correctness.py @@ -0,0 +1,54 @@ +""" +LM eval harness on model to compare vs HF baseline computed offline. +Configs are found in configs/$MODEL.yaml + +* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml +* export LM_EVAL_TP_SIZE=4 +* pytest -s test_lm_eval_correctness.py +""" + +import os +from pathlib import Path + +import lm_eval +import numpy +import yaml + +RTOL = 0.02 +TEST_DATA_FILE = os.environ.get( + "LM_EVAL_TEST_DATA_FILE", + ".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml") + +TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1) + + +def launch_lm_eval(eval_config): + model_args = f"pretrained={eval_config['model_name']}," \ + f"tensor_parallel_size={TP_SIZE}" + + results = lm_eval.simple_evaluate( + model="vllm", + model_args=model_args, + tasks=[task["name"] for task in eval_config["tasks"]], + num_fewshot=eval_config["num_fewshot"], + limit=eval_config["limit"], + batch_size="auto") + + return results + + +def test_lm_eval_correctness(): + eval_config = yaml.safe_load( + Path(TEST_DATA_FILE).read_text(encoding="utf-8")) + + # Launch eval requests. + results = launch_lm_eval(eval_config) + + # Confirm scores match ground truth. + for task in eval_config["tasks"]: + for metric in task["metrics"]: + ground_truth = metric["value"] + measured_value = results["results"][task["name"]][metric["name"]] + print(f'{task["name"]} | {metric["name"]}: ' + f'ground_truth={ground_truth} | measured={measured_value}') + assert numpy.isclose(ground_truth, measured_value, rtol=RTOL) diff --git a/.buildkite/run-openvino-test.sh b/.buildkite/run-openvino-test.sh new file mode 100755 index 0000000000000..70e56596c4a86 --- /dev/null +++ b/.buildkite/run-openvino-test.sh @@ -0,0 +1,14 @@ +# This script build the OpenVINO docker image and run the offline inference inside the container. +# It serves a sanity check for compilation and basic model usage. +set -ex + +# Try building the docker image +docker build -t openvino-test -f Dockerfile.openvino . + +# Setup cleanup +remove_docker_container() { docker rm -f openvino-test || true; } +trap remove_docker_container EXIT +remove_docker_container + +# Run the image and launch offline inference +docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/vllm/examples/offline_inference.py diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 0b87e6280f0bb..d96e3c6d192e2 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -1,7 +1,10 @@ # In this file, you can add more tests to run either by adding a new step or # adding a new command to an existing step. See different options here for examples. -# This script will be feed into Jinja template in `test-template-aws.j2` to generate -# the final pipeline yaml file. + +# This script will be feed into Jinja template in `test-template-aws.j2` at +# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2 +# to generate the final pipeline yaml file. + steps: - label: Regression Test @@ -24,7 +27,9 @@ steps: - label: Core Test mirror_hardwares: [amd] - command: pytest -v -s core + commands: + - pytest -v -s core + - pytest -v -s distributed/test_parallel_state.py - label: Distributed Comm Ops Test #mirror_hardwares: [amd] @@ -39,19 +44,21 @@ steps: working_dir: "/vllm-workspace/tests" num_gpus: 2 commands: - # FIXIT: find out which code initialize cuda before running the test - # before the fix, we need to use spawn to test it - - export VLLM_WORKER_MULTIPROC_METHOD=spawn + - bash ../.buildkite/download-images.sh - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py - TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py - TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py + - TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py + - TEST_DIST_MODEL=microsoft/Phi-3-vision-128k-instruct DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py - TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py - TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py - - pytest -v -s spec_decode/e2e/test_integration_dist.py + - TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_multimodal_broadcast.py + - TEST_DIST_MODEL=microsoft/Phi-3-vision-128k-instruct DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_multimodal_broadcast.py + - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py @@ -60,14 +67,12 @@ steps: working_dir: "/vllm-workspace/tests" num_gpus: 4 commands: - # FIXIT: find out which code initialize cuda before running the test - # before the fix, we need to use spawn to test it - - export VLLM_WORKER_MULTIPROC_METHOD=spawn - pytest -v -s distributed/test_pynccl.py # We want to test that models which use 2 GPUs work with 4 GPUs, which is why we duplicate them here. # See https://github.com/vllm-project/vllm/pull/5473#issuecomment-2166601837 for context. - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py + - pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py - label: Engine Test mirror_hardwares: [amd] @@ -77,8 +82,8 @@ steps: mirror_hardwares: [amd] commands: - - pytest -v -s entrypoints -m llm - - pytest -v -s entrypoints -m openai + - pytest -v -s entrypoints/llm + - pytest -v -s entrypoints/openai - label: Examples Test working_dir: "/vllm-workspace/examples" @@ -186,6 +191,22 @@ steps: - pip install aiohttp - bash run-benchmarks.sh +- label: LM Eval Small Models + working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + commands: + - pip install lm-eval + - export VLLM_WORKER_MULTIPROC_METHOD=spawn + - bash ./run-tests.sh -c configs/models-small.txt -t 1 + +- label: LM Eval Large Models + gpu: a100 + num_gpus: 4 + working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + commands: + - pip install lm-eval + - export VLLM_WORKER_MULTIPROC_METHOD=spawn + - bash ./run-tests.sh -c configs/models-large.txt -t 4 + - label: Documentation Build working_dir: "/vllm-workspace/test_docs/docs" no_gpu: True @@ -197,11 +218,12 @@ steps: gpu: a100 num_gpus: 4 commands: - # FIXIT: find out which code initialize cuda before running the test - # before the fix, we need to use spawn to test it - - export VLLM_WORKER_MULTIPROC_METHOD=spawn # NOTE: don't test llama model here, it seems hf implementation is buggy # see https://github.com/vllm-project/vllm/pull/5689 for details - pytest -v -s distributed/test_custom_all_reduce.py - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py - TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py + - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.5/flashinfer-0.0.5+cu121torch2.3-cp310-cp310-linux_x86_64.whl + - VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py + - VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=meta-llama/Meta-Llama-3-8B DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py + - pytest -v -s -x lora/test_mixtral.py diff --git a/.buildkite/test-template-aws.j2 b/.buildkite/test-template-aws.j2 deleted file mode 100644 index 1a7fb44c2ecc5..0000000000000 --- a/.buildkite/test-template-aws.j2 +++ /dev/null @@ -1,145 +0,0 @@ -{% set docker_image = "public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT" %} -{% set default_working_dir = "/vllm-workspace/tests" %} - -steps: - - label: ":docker: build image" - agents: - queue: cpu_queue - commands: - - "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7" - - "docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --tag {{ docker_image }} --target test --progress plain ." - - "docker push {{ docker_image }}" - env: - DOCKER_BUILDKIT: "1" - retry: - automatic: - - exit_status: -1 # Agent was lost - limit: 5 - - exit_status: -10 # Agent was lost - limit: 5 - - wait - - - group: "AMD Tests" - depends_on: ~ - steps: - {% for step in steps %} - {% if step.mirror_hardwares and "amd" in step.mirror_hardwares %} - - label: "AMD: {{ step.label }}" - agents: - queue: amd - command: bash .buildkite/run-amd-test.sh "cd {{ (step.working_dir or default_working_dir) | safe }} ; {{ step.command or (step.commands | join(" ; ")) | safe }}" - env: - DOCKER_BUILDKIT: "1" - priority: 100 - soft_fail: true - {% endif %} - {% endfor %} - - - label: "Neuron Test" - depends_on: ~ - agents: - queue: neuron - command: bash .buildkite/run-neuron-test.sh - soft_fail: false - - - label: "Intel CPU Test" - depends_on: ~ - agents: - queue: intel-cpu - command: bash .buildkite/run-cpu-test.sh - - - label: "Intel GPU Test" - depends_on: ~ - agents: - queue: intel-gpu - command: bash .buildkite/run-xpu-test.sh - - {% for step in steps %} - {% if step.gpu == "a100" %} - - label: "{{ step.label }}" - agents: - queue: a100-queue - soft_fail: {{ step.soft_fail or false }} - {% if step.parallelism %} - parallelism: {{ step.parallelism }} - {% endif %} - retry: - automatic: - - exit_status: -1 # Agent was lost - limit: 5 - - exit_status: -10 # Agent was lost - limit: 5 - plugins: - - kubernetes: - podSpec: - priorityClassName: ci - containers: - - image: {{ docker_image }} - command: ["bash"] - args: - - '-c' - - "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'" - resources: - limits: - nvidia.com/gpu: {{ step.num_gpus or 1 }} - volumeMounts: - - name: devshm - mountPath: /dev/shm - env: - - name: VLLM_USAGE_SOURCE - value: ci-test - - name: HF_TOKEN - valueFrom: - secretKeyRef: - name: hf-token-secret - key: token - nodeSelector: - nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB - volumes: - - name: devshm - emptyDir: - medium: Memory - {% else %} - - label: "{{ step.label }}" - agents: - {% if step.label == "Documentation Build" %} - queue: small_cpu_queue - {% elif step.no_gpu %} - queue: cpu_queue - {% elif step.num_gpus == 2 or step.num_gpus == 4 %} - queue: gpu_4_queue - {% else %} - queue: gpu_1_queue - {% endif %} - soft_fail: {{ step.soft_fail or false }} - {% if step.parallelism %} - parallelism: {{ step.parallelism }} - {% endif %} - retry: - automatic: - - exit_status: -1 # Agent was lost - limit: 5 - - exit_status: -10 # Agent was lost - limit: 5 - plugins: - - docker#v5.2.0: - image: {{ docker_image }} - always-pull: true - propagate-environment: true - {% if not step.no_gpu %} - gpus: all - {% endif %} - {% if step.label == "Benchmarks" %} - mount-buildkite-agent: true - {% endif %} - command: ["bash", "-c", "cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}"] - environment: - - VLLM_USAGE_SOURCE=ci-test - - HF_TOKEN - {% if step.label == "Speculative decoding tests" %} - - VLLM_ATTENTION_BACKEND=XFORMERS - {% endif %} - volumes: - - /dev/shm:/dev/shm - {% endif %} - {% endfor %} diff --git a/.github/actions/nm-get-docker-tags/action.yml b/.github/actions/nm-get-docker-tags/action.yml index af4130459286b..c7b9cf85e69e7 100644 --- a/.github/actions/nm-get-docker-tags/action.yml +++ b/.github/actions/nm-get-docker-tags/action.yml @@ -4,8 +4,8 @@ inputs: wf_category: description: "type of nm-vllm to install for the docker image: NIGHTLY or RELEASE" required: true - wheel: - description: "wheel name, if latest use the latest from nm pypi" + whl: + description: "name of nm-vllm wheel to install for the docker image" required: true outputs: tag: @@ -22,16 +22,23 @@ runs: steps: - id: tags run: | - BUILD_VERSION=`echo "${{ inputs.wheel }}" | cut -d'-' -f2` + BUILD_VERSION=`echo "${{ inputs.whl }}" | cut -d'-' -f2` if [[ "${{ inputs.wf_category }}" == "RELEASE" ]]; then - TAG="v${build_version}" - EXTRA_TAG=latest + if [[ "${BUILD_VERSION}" =~ ^[0-9]+.[0-9]+.[0-9]+$ ]]; then + TAG="v${BUILD_VERSION}" + EXTRA_TAG=latest + else + echo "ERROR: wheel version ${BUILD_VERSION} doesn't match RELEASE format. Check input." + exit 1 + fi else - TAG=`echo "${build_version}" | cut -d'.' -f4` - EXTRA_TAG=nightly - fi - if [[ "${{ inputs.wheel }}" == "latest" ]]; then - BUILD_VERSION="latest" + if [[ "${BUILD_VERSION}" =~ ^[0-9]+.[0-9]+.[0-9]+.[0-9]{8}$ ]]; then + TAG=`echo "${BUILD_VERSION}" | cut -d'.' -f4` + EXTRA_TAG=nightly + else + echo "ERROR: wheel version ${BUILD_VERSION} doesn't match NIGHTLY format. Check input." + exit 1 + fi fi echo "tag=${TAG}" >> $GITHUB_OUTPUT echo "extra_tag=${EXTRA_TAG}" >> $GITHUB_OUTPUT diff --git a/.github/scripts/run-tests b/.github/scripts/run-tests index e2e12772d0816..bed217a40fe25 100755 --- a/.github/scripts/run-tests +++ b/.github/scripts/run-tests @@ -85,6 +85,9 @@ do CUDA_VISIBLE_DEVICES=0,1 pytest ${CC_PYTEST_FLAGS} --junitxml=${RESULT_XML} ${TEST} || LOCAL_SUCCESS=$? elif [[ "${TEST}" == *"distributed/test_same_node"* ]]; then VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 ${TEST} || LOCAL_SUCCESS=$? + elif [[ "${TEST}" == *"distributed/test_multimodal_broadcast.py"* ]]; then + TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest ${CC_PYTEST_FLAGS} --junitxml=${RESULT_XML} ${TEST} || LOCAL_SUCCESS=$? + TEST_DIST_MODEL=microsoft/Phi-3-vision-128k-instruct DISTRIBUTED_EXECUTOR_BACKEND=mp pytest ${CC_PYTEST_FLAGS} --junitxml=${RESULT_XML} ${TEST} || LOCAL_SUCCESS=$? elif [[ "${TEST}" == *"distributed"* ]]; then CUDA_VISIBLE_DEVICES=0,1 pytest ${CC_PYTEST_FLAGS} --junitxml=${RESULT_XML} ${TEST} || LOCAL_SUCCESS=$? elif [[ "${TEST}" == *"test_models_logprobs"* ]]; then diff --git a/.github/workflows/nm-build-test.yml b/.github/workflows/nm-build-test.yml index 2e666ed70af6e..d57acd6a4f8ec 100644 --- a/.github/workflows/nm-build-test.yml +++ b/.github/workflows/nm-build-test.yml @@ -176,11 +176,11 @@ jobs: # update docker DOCKER: needs: [BUILD, UPLOAD] - if: ${{ inputs.push_to_pypi }} + if: ${{ inputs.wf_category != 'REMOTE' }} uses: ./.github/workflows/publish-docker.yml with: push_to_repository: ${{ inputs.push_to_pypi }} gitref: ${{ inputs.gitref }} wf_category: ${{ inputs.wf_category }} - wheel: ${{ needs.BUILD.outputs.whl }} + whl: ${{ needs.BUILD.outputs.whl }} secrets: inherit diff --git a/.github/workflows/nm-build.yml b/.github/workflows/nm-build.yml index d8672a5118971..2503fa70d4ac1 100644 --- a/.github/workflows/nm-build.yml +++ b/.github/workflows/nm-build.yml @@ -31,6 +31,10 @@ on: description: "python version, e.g. 3.10.12" type: string required: true + outputs: + whl: + description: 'basename for generated whl' + value: ${{ jobs.BUILD.outputs.whl }} # makes workflow manually callable workflow_dispatch: @@ -104,7 +108,7 @@ jobs: - name: set python id: set_python - uses: neuralmagic/nm-actions/actions/set-python@main + uses: neuralmagic/nm-actions/actions/set-python@v1.0.0 with: python: ${{ inputs.python }} venv: ${{ env.VENV_BASE }} diff --git a/.github/workflows/nm-test.yml b/.github/workflows/nm-test.yml index 01d6fa96730d3..bd0cd4cc06af1 100644 --- a/.github/workflows/nm-test.yml +++ b/.github/workflows/nm-test.yml @@ -72,10 +72,7 @@ jobs: python-version: ${{ inputs.python }} - name: install automation components - run: | - sudo apt-get update --fix-missing - sudo apt-get install -y git-all - sudo apt-get install -y curl + uses: neuralmagic/nm-actions/actions/install-automation-components@v1.0.0 - name: checkout id: checkout @@ -94,7 +91,7 @@ jobs: nvcc_threads: 0 - name: install testmo - uses: neuralmagic/nm-actions/actions/install-testmo@main + uses: neuralmagic/nm-actions/actions/install-testmo@v1.0.0 - name: create testmo run id: create_testmo_run diff --git a/.github/workflows/nm-upload-assets-to-gcp.yml b/.github/workflows/nm-upload-assets-to-gcp.yml index 0dad796b13840..eba427927679d 100644 --- a/.github/workflows/nm-upload-assets-to-gcp.yml +++ b/.github/workflows/nm-upload-assets-to-gcp.yml @@ -24,6 +24,30 @@ on: description: "wheel file path" type: string required: true + + workflow_dispatch: + inputs: + label: + description: "requested runner label (specifies instance)" + type: string + required: true + timeout: + description: "time limit for run in minutes " + type: string + required: true + gitref: + description: 'git commit hash or branch name' + type: string + required: true + wf_category: + description: "workflow category: REMOTE, NIGHTLY, RELEASE" + type: string + default: "REMOTE" + whl: + description: "wheel file path" + type: string + required: true + jobs: PUBLISH: @@ -88,3 +112,15 @@ jobs: id: cp-assets uses: ./.github/actions/nm-cp-assets/ + - name: trigger stratus nm-pypi update workflow to update nm-pypi index + uses: actions/github-script@v6 + with: + github-token: ${{ secrets.CICD_GITHUB_PAT }} + script: | + const result = await github.rest.actions.createWorkflowDispatch({ + owner: 'neuralmagic', + repo: 'stratus', + workflow_id: 'nm-pypi-update.yml', + ref: 'main' + }) + console.log(result) diff --git a/.github/workflows/publish-docker.yml b/.github/workflows/publish-docker.yml index 984f8a2463d16..4492994d79197 100644 --- a/.github/workflows/publish-docker.yml +++ b/.github/workflows/publish-docker.yml @@ -15,10 +15,10 @@ on: description: "type of nm-vllm to install for the docker image: NIGHTLY (default) or RELEASE" type: string default: 'NIGHTLY' - wheel: - description: "nm-vllm wheel to install for the docker image: latest (default) or specific wheel name" + whl: + description: "nm-vllm wheel to install for the docker image" type: string - default: 'latest' + required: true workflow_dispatch: inputs: @@ -34,10 +34,10 @@ on: description: "type of nm-vllm to install for the docker image: NIGHTLY (default) or RELEASE" type: string default: 'NIGHTLY' - wheel: - description: "nm-vllm wheel to install for the docker image: latest (default) or specific wheel name" + whl: + description: "nm-vllm wheel to install for the docker image" type: string - default: 'latest' + required: true jobs: build-docker-image: @@ -70,7 +70,7 @@ jobs: uses: ./.github/actions/nm-get-docker-tags/ with: wf_category: ${{ inputs.wf_category }} - wheel: ${{ inputs.wheel }} + whl: ${{ inputs.whl }} - name: Build image id: build diff --git a/CMakeLists.txt b/CMakeLists.txt index aa15b632cdd3b..ede9192cd1dbb 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -2,7 +2,8 @@ cmake_minimum_required(VERSION 3.21) project(vllm_extensions LANGUAGES CXX) -option(VLLM_TARGET_DEVICE "Target device backend for vLLM" "cuda") +# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py) +set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM") message(STATUS "Build type: ${CMAKE_BUILD_TYPE}") message(STATUS "Target device: ${VLLM_TARGET_DEVICE}") @@ -32,8 +33,7 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx11 # versions are derived from Dockerfile.rocm # set(TORCH_SUPPORTED_VERSION_CUDA "2.3.0") -set(TORCH_SUPPORTED_VERSION_ROCM_5X "2.0.1") -set(TORCH_SUPPORTED_VERSION_ROCM_6X "2.1.1") +set(TORCH_SUPPORTED_VERSION_ROCM "2.4.0") # # Try to find python package with an executable that exactly matches @@ -98,18 +98,11 @@ elseif(HIP_FOUND) # .hip extension automatically, HIP must be enabled explicitly. enable_language(HIP) - # ROCm 5.x - if (ROCM_VERSION_DEV_MAJOR EQUAL 5 AND - NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_5X}) - message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_5X} " - "expected for ROCMm 5.x build, saw ${Torch_VERSION} instead.") - endif() - - # ROCm 6.x - if (ROCM_VERSION_DEV_MAJOR EQUAL 6 AND - NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_6X}) - message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_6X} " - "expected for ROCMm 6.x build, saw ${Torch_VERSION} instead.") + # ROCm 5.X and 6.X + if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND + NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM}) + message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM} " + "expected for ROCm build, saw ${Torch_VERSION} instead.") endif() else() message(FATAL_ERROR "Can't find CUDA or HIP installation.") diff --git a/Dockerfile b/Dockerfile index 60fe17c4f08d9..cc4976db8fc13 100644 --- a/Dockerfile +++ b/Dockerfile @@ -62,20 +62,6 @@ RUN apt-get update -y && apt-get install -y ccache #################### EXTENSION Build IMAGE #################### -#################### FLASH_ATTENTION Build IMAGE #################### -FROM dev as flash-attn-builder -# flash attention version -ARG flash_attn_version=v2.5.8 -ENV FLASH_ATTN_VERSION=${flash_attn_version} - -WORKDIR /usr/src/flash-attention-v2 - -# Download the wheel or build it if a pre-compiled release doesn't exist -RUN pip --verbose wheel flash-attn==${FLASH_ATTN_VERSION} \ - --no-build-isolation --no-deps --no-cache-dir - -#################### FLASH_ATTENTION Build IMAGE #################### - #################### vLLM installation IMAGE #################### # image with vLLM installed FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base @@ -114,9 +100,6 @@ RUN --mount=type=bind,from=build \ fi; \ fi -RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \ - --mount=type=cache,target=/root/.cache/pip \ - pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir #################### vLLM installation IMAGE #################### #################### TEST IMAGE #################### diff --git a/Dockerfile.openvino b/Dockerfile.openvino new file mode 100644 index 0000000000000..9861997b451a9 --- /dev/null +++ b/Dockerfile.openvino @@ -0,0 +1,26 @@ +# The vLLM Dockerfile is used to construct vLLM image that can be directly used +# to run the OpenAI compatible server. + +FROM ubuntu:22.04 AS dev + +RUN apt-get update -y && \ + apt-get install -y python3-pip git +WORKDIR /workspace + +# copy requirements +COPY requirements-build.txt /workspace/vllm/ +COPY requirements-common.txt /workspace/vllm/ +COPY requirements-openvino.txt /workspace/vllm/ + +COPY vllm/ /workspace/vllm/vllm +COPY setup.py /workspace/vllm/ + +# install build requirements +RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/vllm/requirements-build.txt +# build vLLM with OpenVINO backend +RUN PIP_PRE=1 PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu https://storage.openvinotoolkit.org/simple/wheels/nightly/" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace/vllm/ + +COPY examples/ /workspace/vllm/examples +COPY benchmarks/ /workspace/vllm/benchmarks + +CMD ["/bin/bash"] diff --git a/Dockerfile.ppc64le b/Dockerfile.ppc64le new file mode 100644 index 0000000000000..d4e4c483cada8 --- /dev/null +++ b/Dockerfile.ppc64le @@ -0,0 +1,22 @@ +FROM mambaorg/micromamba +ARG MAMBA_DOCKERFILE_ACTIVATE=1 +USER root + +RUN apt-get update -y && apt-get install -y git wget vim numactl gcc-12 g++-12 protobuf-compiler libprotobuf-dev && update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 + +# Some packages in requirements-cpu are installed here +# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba +# Currently these may not be available for venv or pip directly +RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 pytorch-cpu=2.1.2 torchvision-cpu=0.16.2 && micromamba clean --all --yes + +COPY ./ /workspace/vllm + +WORKDIR /workspace/vllm + +# These packages will be in rocketce eventually +RUN pip install -v -r requirements-cpu.txt --prefer-binary --extra-index-url https://repo.fury.io/mgiessing + +RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install + +WORKDIR /vllm-workspace +ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"] diff --git a/Dockerfile.rocm b/Dockerfile.rocm index 6bda696859c8b..1b89b892bbf1c 100644 --- a/Dockerfile.rocm +++ b/Dockerfile.rocm @@ -1,34 +1,35 @@ -# default base image -ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" - -FROM $BASE_IMAGE - -ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" - -RUN echo "Base image is $BASE_IMAGE" - -ARG ROCm_5_7_BASE="rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" \ - ROCm_6_0_BASE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" - +# Default ROCm 6.1 base image +ARG BASE_IMAGE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging" + +# Tested and supported base rocm/pytorch images +ARG ROCm_5_7_BASE="rocm/pytorch:rocm5.7_ubuntu20.04_py3.9_pytorch_2.0.1" \ + ROCm_6_0_BASE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" \ + ROCM_6_1_BASE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging" + +# Default ROCm ARCHes to build vLLM for. +ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100" + +# Whether to build CK-based flash-attention +# If 0, will not build flash attention +# This is useful for gfx target where flash-attention is not supported +# (i.e. those that do not appear in `FA_GFX_ARCHS`) +# Triton FA is used by default on ROCm now so this is unnecessary. +ARG BUILD_FA="1" ARG FA_GFX_ARCHS="gfx90a;gfx942" -RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS" - ARG FA_BRANCH="ae7928c" -RUN echo "FA_BRANCH is $FA_BRANCH" -# whether to build flash-attention -# if 0, will not build flash attention -# this is useful for gfx target where flash-attention is not supported -# In that case, we need to use the python reference attention implementation in vllm -ARG BUILD_FA="1" - -# whether to build triton on rocm +# Whether to build triton on rocm ARG BUILD_TRITON="1" +ARG TRITON_BRANCH="0ef1848" -# Install some basic utilities -RUN apt-get update && apt-get install python3 python3-pip -y +### Base image build stage +FROM $BASE_IMAGE AS base + +# Import arg(s) defined before this build stage +ARG PYTORCH_ROCM_ARCH # Install some basic utilities +RUN apt-get update && apt-get install python3 python3-pip -y RUN apt-get update && apt-get install -y \ curl \ ca-certificates \ @@ -39,79 +40,165 @@ RUN apt-get update && apt-get install -y \ build-essential \ wget \ unzip \ - nvidia-cuda-toolkit \ tmux \ ccache \ && rm -rf /var/lib/apt/lists/* -### Mount Point ### -# When launching the container, mount the code directory to /app +# When launching the container, mount the code directory to /vllm-workspace ARG APP_MOUNT=/vllm-workspace -VOLUME [ ${APP_MOUNT} ] WORKDIR ${APP_MOUNT} -RUN python3 -m pip install --upgrade pip -RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas +RUN pip install --upgrade pip +# Remove sccache so it doesn't interfere with ccache +# TODO: implement sccache support across components +RUN apt-get purge -y sccache; pip uninstall -y sccache; rm -f "$(which sccache)" +# Install torch == 2.4.0 on ROCm +RUN case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \ + *"rocm-5.7"*) \ + pip uninstall -y torch torchaudio torchvision \ + && pip install --no-cache-dir --pre \ + torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \ + torchvision==0.19.0.dev20240612 \ + --index-url https://download.pytorch.org/whl/nightly/rocm5.7;; \ + *"rocm-6.0"*) \ + pip uninstall -y torch torchaudio torchvision \ + && pip install --no-cache-dir --pre \ + torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \ + torchvision==0.19.0.dev20240612 \ + --index-url https://download.pytorch.org/whl/nightly/rocm6.0;; \ + *"rocm-6.1"*) \ + pip uninstall -y torch torchaudio torchvision \ + && pip install --no-cache-dir --pre \ + torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \ + torchvision==0.19.0.dev20240612 \ + --index-url https://download.pytorch.org/whl/nightly/rocm6.1;; \ + *) ;; esac ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin: ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib: ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/: -# Install ROCm flash-attention -RUN if [ "$BUILD_FA" = "1" ]; then \ - mkdir libs \ +ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} +ENV CCACHE_DIR=/root/.cache/ccache + + +### AMD-SMI build stage +FROM base AS build_amdsmi +# Build amdsmi wheel always +RUN cd /opt/rocm/share/amd_smi \ + && pip wheel . --wheel-dir=/install + + +### Flash-Attention wheel build stage +FROM base AS build_fa +ARG BUILD_FA +ARG FA_GFX_ARCHS +ARG FA_BRANCH +# Build ROCm flash-attention wheel if `BUILD_FA = 1` +RUN --mount=type=cache,target=${CCACHE_DIR} \ + if [ "$BUILD_FA" = "1" ]; then \ + mkdir -p libs \ && cd libs \ && git clone https://github.com/ROCm/flash-attention.git \ && cd flash-attention \ - && git checkout ${FA_BRANCH} \ + && git checkout "${FA_BRANCH}" \ && git submodule update --init \ - && export GPU_ARCHS=${FA_GFX_ARCHS} \ - && if [ "$BASE_IMAGE" = "$ROCm_5_7_BASE" ]; then \ - patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \ - && python3 setup.py install \ - && cd ..; \ + && case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \ + *"rocm-5.7"*) \ + export VLLM_TORCH_PATH="$(python3 -c 'import torch; print(torch.__path__[0])')" \ + && patch "${VLLM_TORCH_PATH}"/utils/hipify/hipify_python.py hipify_patch.patch;; \ + *) ;; esac \ + && GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \ + # Create an empty directory otherwise as later build stages expect one + else mkdir -p /install; \ fi -# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt. -# Manually removed it so that later steps of numpy upgrade can continue -RUN if [ "$BASE_IMAGE" = "$ROCm_6_0_BASE" ]; then \ - rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi -# build triton -RUN if [ "$BUILD_TRITON" = "1" ]; then \ +### Triton wheel build stage +FROM base AS build_triton +ARG BUILD_TRITON +ARG TRITON_BRANCH +# Build triton wheel if `BUILD_TRITON = 1` +RUN --mount=type=cache,target=${CCACHE_DIR} \ + if [ "$BUILD_TRITON" = "1" ]; then \ mkdir -p libs \ && cd libs \ - && pip uninstall -y triton \ - && git clone https://github.com/ROCm/triton.git \ - && cd triton/python \ - && pip3 install . \ - && cd ../..; \ + && git clone https://github.com/OpenAI/triton.git \ + && cd triton \ + && git checkout "${TRITON_BRANCH}" \ + && cd python \ + && python3 setup.py bdist_wheel --dist-dir=/install; \ + # Create an empty directory otherwise as later build stages expect one + else mkdir -p /install; \ fi -WORKDIR /vllm-workspace + +### Final vLLM build stage +FROM base AS final +# Import the vLLM development directory from the build context COPY . . -#RUN python3 -m pip install pynvml # to be removed eventually -RUN python3 -m pip install --upgrade pip numba +# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt. +# Manually remove it so that later steps of numpy upgrade can continue +RUN case "$(which python3)" in \ + *"/opt/conda/envs/py_3.9"*) \ + rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/;; \ + *) ;; esac + +# Package upgrades for useful functionality or to avoid dependency issues +RUN --mount=type=cache,target=/root/.cache/pip \ + pip install --upgrade numba scipy huggingface-hub[cli] -# make sure punica kernels are built (for LoRA) +# Make sure punica kernels are built (for LoRA) ENV VLLM_INSTALL_PUNICA_KERNELS=1 # Workaround for ray >= 2.10.0 ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1 +# Silences the HF Tokenizers warning +ENV TOKENIZERS_PARALLELISM=false -ENV VLLM_NCCL_SO_PATH=/opt/rocm/lib/librccl.so - -ENV CCACHE_DIR=/root/.cache/ccache -RUN --mount=type=cache,target=/root/.cache/ccache \ +RUN --mount=type=cache,target=${CCACHE_DIR} \ --mount=type=cache,target=/root/.cache/pip \ pip install -U -r requirements-rocm.txt \ - && if [ "$BASE_IMAGE" = "$ROCm_6_0_BASE" ]; then \ - patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h ./rocm_patch/rocm_bf16.patch; fi \ - && python3 setup.py install \ - && export VLLM_PYTHON_VERSION=$(python -c "import sys; print(str(sys.version_info.major) + str(sys.version_info.minor))") \ - && cp build/lib.linux-x86_64-cpython-${VLLM_PYTHON_VERSION}/vllm/*.so vllm/ \ - && cd .. + && case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \ + *"rocm-6.0"*) \ + patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h rocm_patch/rocm_bf16.patch;; \ + *"rocm-6.1"*) \ + # Bring in upgrades to HIP graph earlier than ROCm 6.2 for vLLM + wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P rocm_patch \ + && cp rocm_patch/libamdhip64.so.6 /opt/rocm/lib/libamdhip64.so.6 \ + # Prevent interference if torch bundles its own HIP runtime + && rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so* || true;; \ + *) ;; esac \ + && python3 setup.py clean --all \ + && python3 setup.py develop + +# Copy amdsmi wheel into final image +RUN --mount=type=bind,from=build_amdsmi,src=/install,target=/install \ + mkdir -p libs \ + && cp /install/*.whl libs \ + # Preemptively uninstall to avoid same-version no-installs + && pip uninstall -y amdsmi; +# Copy triton wheel(s) into final image if they were built +RUN --mount=type=bind,from=build_triton,src=/install,target=/install \ + mkdir -p libs \ + && if ls /install/*.whl; then \ + cp /install/*.whl libs \ + # Preemptively uninstall to avoid same-version no-installs + && pip uninstall -y triton; fi + +# Copy flash-attn wheel(s) into final image if they were built +RUN --mount=type=bind,from=build_fa,src=/install,target=/install \ + mkdir -p libs \ + && if ls /install/*.whl; then \ + cp /install/*.whl libs \ + # Preemptively uninstall to avoid same-version no-installs + && pip uninstall -y flash-attn; fi + +# Install wheels that were built to the final image +RUN --mount=type=cache,target=/root/.cache/pip \ + if ls libs/*.whl; then \ + pip install libs/*.whl; fi CMD ["/bin/bash"] diff --git a/benchmarks/backend_request_func.py b/benchmarks/backend_request_func.py index 4350b96b04a6a..fd2461ce58b93 100644 --- a/benchmarks/backend_request_func.py +++ b/benchmarks/backend_request_func.py @@ -265,6 +265,9 @@ async def async_request_openai_completions( else: data = json.loads(chunk) + # NOTE: Some completion API might have a last + # usage summary response without a token so we + # want to check a token was generated if data["choices"][0]["text"]: timestamp = time.perf_counter() # First token @@ -273,12 +276,8 @@ async def async_request_openai_completions( output.ttft = ttft # Decoding phase - # NOTE: Some completion API might have a last - # usage summary response without a token so we - # do not want to include as inter-token-latency - elif data.get("usage", None) is None: - output.itl.append(timestamp - - most_recent_timestamp) + output.itl.append(timestamp - + most_recent_timestamp) most_recent_timestamp = timestamp generated_text += data["choices"][0]["text"] @@ -423,4 +422,5 @@ def get_tokenizer( "openai": async_request_openai_completions, "openai-chat": async_request_openai_chat_completions, "tensorrt-llm": async_request_trt_llm, + "scalellm": async_request_openai_completions, } diff --git a/benchmarks/benchmark_latency.py b/benchmarks/benchmark_latency.py index a4cf0632b7790..a46ee15817f4c 100644 --- a/benchmarks/benchmark_latency.py +++ b/benchmarks/benchmark_latency.py @@ -25,6 +25,8 @@ def main(args: argparse.Namespace): model=args.model, speculative_model=args.speculative_model, num_speculative_tokens=args.num_speculative_tokens, + speculative_draft_tensor_parallel_size=\ + args.speculative_draft_tensor_parallel_size, tokenizer=args.tokenizer, quantization=args.quantization, tensor_parallel_size=args.tensor_parallel_size, @@ -127,6 +129,10 @@ def run_to_completion(profile_dir: Optional[str] = None): parser.add_argument('--model', type=str, default='facebook/opt-125m') parser.add_argument('--speculative-model', type=str, default=None) parser.add_argument('--num-speculative-tokens', type=int, default=None) + parser.add_argument('--speculative-draft-tensor-parallel-size', + '-spec-draft-tp', + type=int, + default=None) parser.add_argument('--tokenizer', type=str, default=None) parser.add_argument('--quantization', '-q', @@ -201,9 +207,10 @@ def run_to_completion(profile_dir: Optional[str] = None): parser.add_argument( "--device", type=str, - default="cuda", - choices=["cuda", "cpu", "tpu", "xpu"], - help='device type for vLLM execution, supporting CUDA and CPU.') + default="auto", + choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"], + help='device type for vLLM execution, supporting CUDA, OpenVINO and ' + 'CPU.') parser.add_argument('--block-size', type=int, default=16, diff --git a/benchmarks/benchmark_throughput.py b/benchmarks/benchmark_throughput.py index 2c6beb4e89672..a52e67bbbe7e3 100644 --- a/benchmarks/benchmark_throughput.py +++ b/benchmarks/benchmark_throughput.py @@ -349,9 +349,10 @@ def main(args: argparse.Namespace): parser.add_argument( "--device", type=str, - default="cuda", - choices=["cuda", "cpu", "tpu", "xpu"], - help='device type for vLLM execution, supporting CUDA and CPU.') + default="auto", + choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"], + help='device type for vLLM execution, supporting CUDA, OpenVINO and ' + 'CPU.') parser.add_argument( "--enable-prefix-caching", action='store_true', diff --git a/cmake/cpu_extension.cmake b/cmake/cpu_extension.cmake index 511e443f78403..690559ee265e9 100644 --- a/cmake/cpu_extension.cmake +++ b/cmake/cpu_extension.cmake @@ -46,6 +46,8 @@ is_avx512_disabled(AVX512_DISABLED) find_isa(${CPUINFO} "avx2" AVX2_FOUND) find_isa(${CPUINFO} "avx512f" AVX512_FOUND) +find_isa(${CPUINFO} "POWER10" POWER10_FOUND) +find_isa(${CPUINFO} "POWER9" POWER9_FOUND) if (AVX512_FOUND AND NOT AVX512_DISABLED) list(APPEND CXX_COMPILE_FLAGS @@ -68,8 +70,15 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED) elseif (AVX2_FOUND) list(APPEND CXX_COMPILE_FLAGS "-mavx2") message(WARNING "vLLM CPU backend using AVX2 ISA") +elseif (POWER9_FOUND OR POWER10_FOUND) + message(STATUS "PowerPC detected") + # Check for PowerPC VSX support + list(APPEND CXX_COMPILE_FLAGS + "-mvsx" + "-mcpu=native" + "-mtune=native") else() - message(FATAL_ERROR "vLLM CPU backend requires AVX512 or AVX2 ISA support.") + message(FATAL_ERROR "vLLM CPU backend requires AVX512 or AVX2 or Power9+ ISA support.") endif() message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}") diff --git a/cmake/utils.cmake b/cmake/utils.cmake index 071e16336dfa2..4869cad541135 100644 --- a/cmake/utils.cmake +++ b/cmake/utils.cmake @@ -147,19 +147,23 @@ macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES) if (${GPU_LANG} STREQUAL "HIP") # # `GPU_ARCHES` controls the `--offload-arch` flags. - # `CMAKE_HIP_ARCHITECTURES` is set up by torch and can be controlled - # via the `PYTORCH_ROCM_ARCH` env variable. # - + # If PYTORCH_ROCM_ARCH env variable exists, then we take it as a list, + # if not, then we use CMAKE_HIP_ARCHITECTURES which was generated by calling + # "rocm_agent_enumerator" in "enable_language(HIP)" + # (in file Modules/CMakeDetermineHIPCompiler.cmake) + # + if(DEFINED ENV{PYTORCH_ROCM_ARCH}) + set(HIP_ARCHITECTURES $ENV{PYTORCH_ROCM_ARCH}) + else() + set(HIP_ARCHITECTURES ${CMAKE_HIP_ARCHITECTURES}) + endif() # # Find the intersection of the supported + detected architectures to # set the module architecture flags. # - - set(VLLM_ROCM_SUPPORTED_ARCHS "gfx908;gfx90a;gfx942;gfx1100") - set(${GPU_ARCHES}) - foreach (_ARCH ${VLLM_ROCM_SUPPORTED_ARCHS}) + foreach (_ARCH ${HIP_ARCHITECTURES}) if (_ARCH IN_LIST _GPU_SUPPORTED_ARCHES_LIST) list(APPEND ${GPU_ARCHES} ${_ARCH}) endif() @@ -167,7 +171,7 @@ macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES) if(NOT ${GPU_ARCHES}) message(FATAL_ERROR - "None of the detected ROCm architectures: ${CMAKE_HIP_ARCHITECTURES} is" + "None of the detected ROCm architectures: ${HIP_ARCHITECTURES} is" " supported. Supported ROCm architectures are: ${_GPU_SUPPORTED_ARCHES_LIST}.") endif() diff --git a/csrc/cpu/cpu_types.hpp b/csrc/cpu/cpu_types.hpp index d7621aaae81c9..0213be09105ed 100644 --- a/csrc/cpu/cpu_types.hpp +++ b/csrc/cpu/cpu_types.hpp @@ -2,514 +2,14 @@ #ifndef CPU_TYPES_HPP #define CPU_TYPES_HPP -#include -#include - -#ifndef __AVX2__ -static_assert(false, "AVX2 must be supported for the current implementation."); -#endif - -namespace vec_op { - -// FIXME: FP16 is not fully supported in Torch-CPU -#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \ - AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \ - AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) - -#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \ - AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__)) - -#ifndef CPU_OP_GUARD -#define CPU_KERNEL_GUARD_IN(NAME) -#define CPU_KERNEL_GUARD_OUT(NAME) -#else -#define CPU_KERNEL_GUARD_IN(NAME) \ - std::cout << #NAME << " invoked." << std::endl; -#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl; -#endif - -#define FORCE_INLINE __attribute__((always_inline)) inline - -namespace { -template -constexpr void unroll_loop_item(std::integer_sequence, F &&f) { - (f(std::integral_constant{}), ...); -} -}; // namespace - -template >> -constexpr void unroll_loop(F &&f) { - unroll_loop_item(std::make_integer_sequence{}, std::forward(f)); -} - -template struct Vec { - constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; } -}; - -struct FP32Vec8; -struct FP32Vec16; - -#ifdef __AVX512FP16__ -struct FP16Vec8 : public Vec { - constexpr static int VEC_ELEM_NUM = 8; - - __m128h reg; - - explicit FP16Vec8(_Float16 v) : reg(_mm_set1_ph(v)) {} - - explicit FP16Vec8(const void *ptr) : reg(_mm_loadu_ph(ptr)) {} - - explicit FP16Vec8(__m128h data) : reg(data) {} - - FP16Vec8 operator*(const FP16Vec8 &b) const { - return FP16Vec8(_mm_mul_ph(reg, b.reg)); - } - - FP16Vec8 operator+(const FP16Vec8 &b) const { - return FP16Vec8(_mm_add_ph(reg, b.reg)); - } - - FP16Vec8 operator-(const FP16Vec8 &b) const { - return FP16Vec8(_mm_sub_ph(reg, b.reg)); - } - - FP16Vec8 operator/(const FP16Vec8 &b) const { - return FP16Vec8(_mm_div_ph(reg, b.reg)); - } - - void save(void *ptr) const { _mm_storeu_ph(ptr, reg); } -}; -#endif - -struct BF16Vec8 : public Vec { - constexpr static int VEC_ELEM_NUM = 8; - - __m128i reg; - - explicit BF16Vec8(const void *ptr) - : reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {} - - explicit BF16Vec8(const FP32Vec8 &); - - void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; } -}; - -struct BF16Vec16 : public Vec { - constexpr static int VEC_ELEM_NUM = 16; - - __m256i reg; - - explicit BF16Vec16(const void *ptr) - : reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {} - - explicit BF16Vec16(const FP32Vec16 &); - - void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; } -}; - -#ifdef __AVX512F__ -struct BF16Vec32 : public Vec { - constexpr static int VEC_ELEM_NUM = 32; - - __m512i reg; - - explicit BF16Vec32(const void *ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {} - - explicit BF16Vec32(__m512i data) : reg(data) {} - - explicit BF16Vec32(BF16Vec8 &vec8_data) - : reg((__m512i)_mm512_inserti32x4( - _mm512_inserti32x4(_mm512_inserti32x4(_mm512_castsi128_si512( - (__m128i)vec8_data.reg), - (__m128i)vec8_data.reg, 1), - (__m128i)vec8_data.reg, 2), - (__m128i)vec8_data.reg, 3)) {} - - void save(void *ptr) const { *reinterpret_cast<__m512i *>(ptr) = reg; } -}; -#else -struct BF16Vec32 : public Vec { - constexpr static int VEC_ELEM_NUM = 32; - - __m256i reg_low; - __m256i reg_high; - - explicit BF16Vec32(const void *ptr) - : reg_low(_mm256_loadu_si256((__m256i const *)ptr)), - reg_high(_mm256_loadu_si256((__m256i const *)ptr + 1)) {} - - explicit BF16Vec32(__m256i low, __m256i high) : reg_low(low), - reg_high(high) {} - - explicit BF16Vec32(BF16Vec8 &vec8_data) - : reg_low((__m256i)_mm256_inserti32x4( - _mm256_castsi128_si256((__m128i)vec8_data.reg), - (__m128i)vec8_data.reg, 1)), - reg_high((__m256i)_mm256_inserti32x4( - _mm256_castsi128_si256((__m128i)vec8_data.reg), - (__m128i)vec8_data.reg, 1)) {} - - void save(void *ptr) const { - *reinterpret_cast<__m256i *>(ptr) = reg_low; - *reinterpret_cast<__m256i *>((__m256i *)ptr + 1) = reg_high; - } -}; -#endif - -struct FP32Vec4 : public Vec { - constexpr static int VEC_ELEM_NUM = 4; - union AliasReg { - __m128 reg; - float values[VEC_ELEM_NUM]; - }; - - __m128 reg; - - explicit FP32Vec4(float v) : reg(_mm_set1_ps(v)) {} - - explicit FP32Vec4() : reg(_mm_set1_ps(0.0)) {} - - explicit FP32Vec4(const float *ptr) : reg(_mm_loadu_ps(ptr)) {} - - explicit FP32Vec4(__m128 data) : reg(data) {} - - explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {} -}; - -struct FP32Vec8 : public Vec { - constexpr static int VEC_ELEM_NUM = 8; - union AliasReg { - __m256 reg; - float values[VEC_ELEM_NUM]; - }; - - __m256 reg; - - explicit FP32Vec8(float v) : reg(_mm256_set1_ps(v)) {} - - explicit FP32Vec8() : reg(_mm256_set1_ps(0.0)) {} - - explicit FP32Vec8(const float *ptr) : reg(_mm256_loadu_ps(ptr)) {} - - explicit FP32Vec8(__m256 data) : reg(data) {} - - explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {} - -#ifdef __AVX512FP16__ - explicit FP32Vec8(__m128h v) : reg(_mm256_cvtph_ps(_mm_castph_si128(v))) {} -#endif - - explicit FP32Vec8(const BF16Vec8 &v) - : reg(_mm256_castsi256_ps( - _mm256_bslli_epi128(_mm256_cvtepu16_epi32(v.reg), 2))) {} - - float reduce_sum() const { - AliasReg ar; - ar.reg = reg; - float result = 0; - unroll_loop([&result, &ar](int i) { result += ar.values[i]; }); - - return result; - } - - FP32Vec8 exp() const { - AliasReg ar; - ar.reg = reg; - return FP32Vec8(_mm256_set_ps(expf(ar.values[7]), expf(ar.values[6]), - expf(ar.values[5]), expf(ar.values[4]), - expf(ar.values[3]), expf(ar.values[2]), - expf(ar.values[1]), expf(ar.values[0]))); - } - - FP32Vec8 tanh() const { - AliasReg ar; - ar.reg = reg; - return FP32Vec8(_mm256_set_ps(tanhf(ar.values[7]), tanhf(ar.values[6]), - tanhf(ar.values[5]), tanhf(ar.values[4]), - tanhf(ar.values[3]), tanhf(ar.values[2]), - tanhf(ar.values[1]), tanhf(ar.values[0]))); - } - - FP32Vec8 er() const { - AliasReg ar; - ar.reg = reg; - return FP32Vec8(_mm256_set_ps(erf(ar.values[7]), erf(ar.values[6]), - erf(ar.values[5]), erf(ar.values[4]), - erf(ar.values[3]), erf(ar.values[2]), - erf(ar.values[1]), erf(ar.values[0]))); - } - - FP32Vec8 operator*(const FP32Vec8 &b) const { - return FP32Vec8(_mm256_mul_ps(reg, b.reg)); - } - - FP32Vec8 operator+(const FP32Vec8 &b) const { - return FP32Vec8(_mm256_add_ps(reg, b.reg)); - } - - FP32Vec8 operator-(const FP32Vec8 &b) const { - return FP32Vec8(_mm256_sub_ps(reg, b.reg)); - } - - FP32Vec8 operator/(const FP32Vec8 &b) const { - return FP32Vec8(_mm256_div_ps(reg, b.reg)); - } - - void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); } -}; - -#ifdef __AVX512F__ -struct FP32Vec16 : public Vec { - constexpr static int VEC_ELEM_NUM = 16; - union AliasReg { - __m512 reg; - float values[VEC_ELEM_NUM]; - }; - - __m512 reg; - - explicit FP32Vec16(float v) : reg(_mm512_set1_ps(v)) {} - - explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {} - - explicit FP32Vec16(const float *ptr) : reg(_mm512_loadu_ps(ptr)) {} - - explicit FP32Vec16(__m512 data) : reg(data) {} - - explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {} - - explicit FP32Vec16(const FP32Vec4 &data) - : reg((__m512)_mm512_inserti32x4( - _mm512_inserti32x4( - _mm512_inserti32x4(_mm512_castsi128_si512((__m128i)data.reg), - (__m128i)data.reg, 1), - (__m128i)data.reg, 2), - (__m128i)data.reg, 3)) {} - - explicit FP32Vec16(const FP32Vec8 &data) - : reg((__m512)_mm512_inserti32x8( - _mm512_castsi256_si512((__m256i)data.reg), (__m256i)data.reg, 1)) {} - - explicit FP32Vec16(const BF16Vec16 &v) - : reg(_mm512_castsi512_ps( - _mm512_bslli_epi128(_mm512_cvtepu16_epi32(v.reg), 2))) {} - - explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {} - - FP32Vec16 operator*(const FP32Vec16 &b) const { - return FP32Vec16(_mm512_mul_ps(reg, b.reg)); - } - - FP32Vec16 operator+(const FP32Vec16 &b) const { - return FP32Vec16(_mm512_add_ps(reg, b.reg)); - } - - FP32Vec16 operator-(const FP32Vec16 &b) const { - return FP32Vec16(_mm512_sub_ps(reg, b.reg)); - } - - FP32Vec16 operator/(const FP32Vec16 &b) const { - return FP32Vec16(_mm512_div_ps(reg, b.reg)); - } - - float reduce_sum() const { return _mm512_reduce_add_ps(reg); } - - template float reduce_sub_sum(int idx) { - static_assert(VEC_ELEM_NUM % group_size == 0); - constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size)); - __mmask16 mask = _cvtu32_mask16(base_mask << (idx * group_size)); - return _mm512_mask_reduce_add_ps(mask, reg); - } - - void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); } -}; +#if defined(__x86_64__) + //x86 implementation + #include "cpu_types_x86.hpp" +#elif defined(__POWER9_VECTOR__) + //ppc implementation + #include "cpu_types_vsx.hpp" #else -struct FP32Vec16 : public Vec { - constexpr static int VEC_ELEM_NUM = 16; - - union AliasReg { - __m256 reg; - float values[8]; - }; - - __m256 reg_low; - __m256 reg_high; - - explicit FP32Vec16(float v) : reg_low(_mm256_set1_ps(v)), - reg_high(_mm256_set1_ps(v)) {} - - explicit FP32Vec16() : reg_low(_mm256_set1_ps(0.0)), - reg_high(_mm256_set1_ps(0.0)) {} - - explicit FP32Vec16(const float *ptr) : reg_low(_mm256_loadu_ps(ptr)), - reg_high(_mm256_loadu_ps(ptr + 8)) {} - - explicit FP32Vec16(__m256 low, __m256 high) : reg_low(low), reg_high(high) {} - - explicit FP32Vec16(const FP32Vec16 &data) : reg_low(data.reg_low), - reg_high(data.reg_high) {} - - explicit FP32Vec16(const FP32Vec4 &data) - : reg_low((__m256)_mm256_inserti128_si256( - _mm256_castsi128_si256((__m128i)data.reg), - (__m128i)data.reg, 1)), - reg_high((__m256)_mm256_inserti128_si256( - _mm256_castsi128_si256((__m128i)data.reg), - (__m128i)data.reg, 1)) {} - - explicit FP32Vec16(const FP32Vec8 &data) - : reg_low(data.reg), reg_high(data.reg) {} - - explicit FP32Vec16(const BF16Vec16 &v) { - __m128i low = _mm256_extractf128_si256(v.reg, 0); - __m128i high = _mm256_extractf128_si256(v.reg, 1); - - __m256i v_low_epi32 = _mm256_cvtepu16_epi32(low); - __m256i v_high_epi32 = _mm256_cvtepu16_epi32(high); - - __m256i v_low_shifted = _mm256_bslli_epi128(v_low_epi32, 2); - __m256i v_high_shifted = _mm256_bslli_epi128(v_high_epi32, 2); - - reg_low = _mm256_castsi256_ps(v_low_shifted); - reg_high = _mm256_castsi256_ps(v_high_shifted); - } - - explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {} - - FP32Vec16 operator*(const FP32Vec16 &b) const { - return FP32Vec16(_mm256_mul_ps(reg_low, b.reg_low), - _mm256_mul_ps(reg_high, b.reg_high)); - } - - FP32Vec16 operator+(const FP32Vec16 &b) const { - return FP32Vec16(_mm256_add_ps(reg_low, b.reg_low), - _mm256_add_ps(reg_high, b.reg_high)); - } - - FP32Vec16 operator-(const FP32Vec16 &b) const { - return FP32Vec16(_mm256_sub_ps(reg_low, b.reg_low), - _mm256_sub_ps(reg_high, b.reg_high)); - } - - FP32Vec16 operator/(const FP32Vec16 &b) const { - return FP32Vec16(_mm256_div_ps(reg_low, b.reg_low), - _mm256_div_ps(reg_high, b.reg_high)); - } - - float reduce_sum() const { - FP32Vec8 low = FP32Vec8(reg_low); - FP32Vec8 high = FP32Vec8(reg_high); - return low.reduce_sum() + high.reduce_sum(); - } - - template float reduce_sub_sum(int idx) { - float sum = 0.0; - static_assert(VEC_ELEM_NUM % group_size == 0); - constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size)); - uint32_t mask = base_mask << (idx * group_size); - - AliasReg ar; - - auto func = [&sum, &mask, &ar](int i) { - int flag = mask & 0x1; - mask = mask >> 1; - if (flag != 0) sum += ar.values[i]; - }; - - ar.reg = reg_low; - unroll_loop(func); - - ar.reg = reg_high; - unroll_loop(func); - - return sum; - } - - void save(float *ptr) const { - _mm256_storeu_ps(ptr, reg_low); - _mm256_storeu_ps(ptr + 8, reg_high); - } -}; -#endif - -template struct VecType { using vec_type = void; }; - -template using vec_t = typename VecType::vec_type; - -template <> struct VecType { using vec_type = FP32Vec8; }; - -#ifdef __AVX512FP16__ -template <> struct VecType { using vec_type = FP16Vec16; }; + #warning "unsupported vLLM cpu implementation" #endif -template <> struct VecType { using vec_type = BF16Vec8; }; - -template void storeFP32(float v, T *ptr) { *ptr = v; } - -#ifdef __AVX512FP16__ -template <> inline void storeFP32(float v, c10::Half *ptr) { - *reinterpret_cast<_Float16 *>(ptr) = v; -} -#endif - -inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) { - acc = acc + a * b; -} - -#ifdef __AVX512BF16__ -template <> inline void storeFP32(float v, c10::BFloat16 *ptr) { - *reinterpret_cast<__bfloat16 *>(ptr) = _mm_cvtness_sbh(v); -} - -inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) - : reg((__m128i)_mm256_cvtneps_pbh(v.reg)) {} - -inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) - : reg((__m256i)_mm512_cvtneps_pbh(v.reg)) {} - -inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) { - acc.reg = _mm512_dpbf16_ps(acc.reg, (__m512bh)a.reg, (__m512bh)b.reg); -} -#else -template <> inline void storeFP32(float v, c10::BFloat16 *ptr) { - c10::BFloat16 __attribute__((__may_alias__)) *v_ptr = - reinterpret_cast(&v); - *ptr = *(v_ptr + 1); -} - -#ifdef __AVX512F__ -inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) - : reg(_mm256_cvtepi32_epi16( - _mm256_bsrli_epi128(_mm256_castps_si256(v.reg), 2))) {} - -inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) - : reg(_mm512_cvtepi32_epi16( - _mm512_bsrli_epi128(_mm512_castps_si512(v.reg), 2))) {} -#else -namespace{ -__m128i FP32Vec8_to_BF16Vec8_avx2(__m256 a) { - __m256i ai = _mm256_castps_si256(a); - ai = _mm256_srli_epi32(ai, 16); - ai = _mm256_packus_epi32(ai, ai); - ai = _mm256_permute4x64_epi64(ai, 0b00111001); - return _mm256_extracti128_si256(ai, 0); -} -} - -inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) - : reg(FP32Vec8_to_BF16Vec8_avx2(v.reg)) {} - -inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) { - BF16Vec8 low = BF16Vec8(FP32Vec8(v.reg_low)); - BF16Vec8 high = BF16Vec8(FP32Vec8(v.reg_high)); - reg = _mm256_insertf128_si256(_mm256_castsi128_si256(low.reg), high.reg, 1); -} -#endif // __AVX512F__ -#endif // __AVX512BF16__ - -inline void prefetch(const void *addr) { _mm_prefetch(addr, _MM_HINT_T1); } - -}; // namespace vec_op - #endif diff --git a/csrc/cpu/cpu_types_vsx.hpp b/csrc/cpu/cpu_types_vsx.hpp new file mode 100644 index 0000000000000..b50bdadc5713d --- /dev/null +++ b/csrc/cpu/cpu_types_vsx.hpp @@ -0,0 +1,491 @@ + +#ifndef CPU_TYPES_VSX_HPP +#define CPU_TYPES_VSX_HPP + +#include +#include +#include + +namespace vec_op { + +// FIXME: FP16 is not fully supported in Torch-CPU +#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \ + AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \ + AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) + +#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \ + AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__)) + +#ifndef CPU_OP_GUARD +#define CPU_KERNEL_GUARD_IN(NAME) +#define CPU_KERNEL_GUARD_OUT(NAME) +#else +#define CPU_KERNEL_GUARD_IN(NAME) \ + std::cout << #NAME << " invoked." << std::endl; +#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl; +#endif + +#define FORCE_INLINE __attribute__((always_inline)) inline + +namespace { +template +constexpr void unroll_loop_item(std::integer_sequence, F &&f) { + (f(std::integral_constant{}), ...); +} +}; // namespace + +template >> +constexpr void unroll_loop(F &&f) { + unroll_loop_item(std::make_integer_sequence{}, std::forward(f)); +} + +template struct Vec { + constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; } +}; + +typedef struct ss16x8x2_t { + __vector signed short val[2]; +} ss16x8x2_t; + +typedef struct ss16x8x4_t { + __vector signed short val[4]; +} ss16x8x4_t; + +typedef struct f32x4x2_t { + __vector float val[2]; +} f32x4x2_t; + +typedef struct f32x4x4_t { + __vector float val[4]; +} f32x4x4_t; + +struct FP32Vec8; +struct FP32Vec16; + +struct BF16Vec8 : public Vec { + constexpr static int VEC_ELEM_NUM = 8; + + __vector signed short reg; + + explicit BF16Vec8(const void *ptr) + : reg((__vector signed short)vec_xl(0, (__vector signed short *)ptr)) {} + + explicit BF16Vec8(const FP32Vec8 &); + + void save(void *ptr) const { *reinterpret_cast<__vector signed short *>(ptr) = reg; } +}; + +struct BF16Vec16 : public Vec { + constexpr static int VEC_ELEM_NUM = 16; + + ss16x8x2_t reg; + + explicit BF16Vec16(const void *ptr) { + // Load 256 bits in two parts + reg.val[0] = (__vector signed short)vec_xl(0, (signed short *)ptr); + reg.val[1] = (__vector signed short)vec_xl(16, (signed short *)ptr); + } + + explicit BF16Vec16(const FP32Vec16 &); + + void save(void *ptr) const { + // Save 256 bits in two parts + vec_xst(reg.val[0], 0, (signed short *)ptr); + vec_xst(reg.val[1], 16, (signed short *)ptr); + } +}; + +const static __vector signed short zero = vec_splats((signed short)0); + +struct BF16Vec32 : public Vec { + constexpr static int VEC_ELEM_NUM = 32; + + ss16x8x4_t reg; + explicit BF16Vec32(const void *ptr) + : reg(*reinterpret_cast(ptr)) {} + + explicit BF16Vec32(ss16x8x4_t data) : reg(data) {} + + explicit BF16Vec32(const BF16Vec8 &vec8_data) : reg({ + vec8_data.reg, + vec8_data.reg, + vec8_data.reg, + vec8_data.reg + }) {} + + void save(void *ptr) const { *reinterpret_cast(ptr) = reg; } +}; + +struct FP32Vec4 : public Vec { + constexpr static int VEC_ELEM_NUM = 4; + union AliasReg { + __vector float reg; + float values[VEC_ELEM_NUM]; + }; + + __vector float reg; + + explicit FP32Vec4(float v) : reg(vec_splats(v)) {} + + explicit FP32Vec4() : reg(vec_splats(0.0f)) {} + + explicit FP32Vec4(const float *ptr) : reg(vec_xl(0, ptr)) {} + + explicit FP32Vec4(__vector float data) : reg(data) {} + + explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {} +}; + +struct FP32Vec8 : public Vec { + constexpr static int VEC_ELEM_NUM = 8; + union AliasReg { + f32x4x2_t reg; + float values[VEC_ELEM_NUM]; + }; + + f32x4x2_t reg; + + explicit FP32Vec8(float v) { + reg.val[0] = vec_splats(v); + reg.val[1] = vec_splats(v); + } + + explicit FP32Vec8() { + reg.val[0] = vec_splats(0.0f); + reg.val[1] = vec_splats(0.0f); + } + + explicit FP32Vec8(const float *ptr) { + reg.val[0] = vec_xl(0, ptr); + reg.val[1] = vec_xl(16, ptr); + } + + explicit FP32Vec8(f32x4x2_t data) : reg(data) {} + + explicit FP32Vec8(const FP32Vec8 &data) { + reg.val[0] = data.reg.val[0]; + reg.val[1] = data.reg.val[1]; + } + + explicit FP32Vec8(const BF16Vec8 &v) { + reg.val[0] = (__vector float)vec_mergeh(zero, v.reg); + reg.val[1] = (__vector float)vec_mergel(zero, v.reg); + } + + float reduce_sum() const { + AliasReg ar; + ar.reg = reg; + float result = 0; + unroll_loop([&result, &ar](int i) { result += ar.values[i]; }); + + return result; + } + + FP32Vec8 exp() const { + // TODO: Vectorize this + AliasReg ar; + ar.reg = reg; + f32x4x4_t ret; + ret.val[0][0] = std::exp(ar.values[0]); + ret.val[0][1] = std::exp(ar.values[1]); + ret.val[0][2] = std::exp(ar.values[2]); + ret.val[0][3] = std::exp(ar.values[3]); + ret.val[1][0] = std::exp(ar.values[4]); + ret.val[1][1] = std::exp(ar.values[5]); + ret.val[1][2] = std::exp(ar.values[6]); + ret.val[1][3] = std::exp(ar.values[7]); + return FP32Vec8(f32x4x2_t({ret.val[0], ret.val[1]})); + } + + FP32Vec8 tanh() const { + // TODO: Vectorize this + AliasReg ar; + ar.reg = reg; + f32x4x4_t ret; + ret.val[0][0] = std::tanh(ar.values[0]); + ret.val[0][1] = std::tanh(ar.values[1]); + ret.val[0][2] = std::tanh(ar.values[2]); + ret.val[0][3] = std::tanh(ar.values[3]); + ret.val[1][0] = std::tanh(ar.values[4]); + ret.val[1][1] = std::tanh(ar.values[5]); + ret.val[1][2] = std::tanh(ar.values[6]); + ret.val[1][3] = std::tanh(ar.values[7]); + return FP32Vec8(f32x4x2_t({ret.val[0], ret.val[1]})); + } + + FP32Vec8 er() const { + // TODO: Vectorize this + AliasReg ar; + ar.reg = reg; + f32x4x4_t ret; + ret.val[0][0] = std::erf(ar.values[0]); + ret.val[0][1] = std::erf(ar.values[1]); + ret.val[0][2] = std::erf(ar.values[2]); + ret.val[0][3] = std::erf(ar.values[3]); + ret.val[1][0] = std::erf(ar.values[4]); + ret.val[1][1] = std::erf(ar.values[5]); + ret.val[1][2] = std::erf(ar.values[6]); + ret.val[1][3] = std::erf(ar.values[7]); + return FP32Vec8(f32x4x2_t({ret.val[0], ret.val[1]})); + } + + FP32Vec8 operator*(const FP32Vec8 &b) const { + return FP32Vec8({vec_mul(reg.val[0], b.reg.val[0]), vec_mul(reg.val[1], b.reg.val[1])}); + } + + FP32Vec8 operator+(const FP32Vec8 &b) const { + return FP32Vec8({vec_add(reg.val[0], b.reg.val[0]), vec_add(reg.val[1], b.reg.val[1])}); + } + + FP32Vec8 operator-(const FP32Vec8 &b) const { + return FP32Vec8({vec_sub(reg.val[0], b.reg.val[0]), vec_sub(reg.val[1], b.reg.val[1])}); + } + + FP32Vec8 operator/(const FP32Vec8 &b) const { + return FP32Vec8({vec_div(reg.val[0], b.reg.val[0]), vec_div(reg.val[1], b.reg.val[1])}); + } + + void save(float *ptr) const { + vec_xst(reg.val[0], 0, ptr); + vec_xst(reg.val[1], 16, ptr); + } +}; + +struct FP32Vec16 : public Vec { + constexpr static int VEC_ELEM_NUM = 16; + union AliasReg { + f32x4x4_t reg; + float values[VEC_ELEM_NUM]; + }; + + f32x4x4_t reg; + + explicit FP32Vec16(float v) { + reg.val[0] = vec_splats(v); + reg.val[1] = vec_splats(v); + reg.val[2] = vec_splats(v); + reg.val[3] = vec_splats(v); + } + + explicit FP32Vec16() { + reg.val[0] = vec_splats(0.0f); + reg.val[1] = vec_splats(0.0f); + reg.val[2] = vec_splats(0.0f); + reg.val[3] = vec_splats(0.0f); + } + + explicit FP32Vec16(const float *ptr) { + reg.val[0] = vec_xl(0, ptr); + reg.val[1] = vec_xl(16, ptr); + reg.val[2] = vec_xl(32, ptr); + reg.val[3] = vec_xl(48, ptr); + } + + explicit FP32Vec16(f32x4x4_t data) : reg(data) {} + + explicit FP32Vec16(const FP32Vec16 &data) { + reg.val[0] = data.reg.val[0]; + reg.val[1] = data.reg.val[1]; + reg.val[2] = data.reg.val[2]; + reg.val[3] = data.reg.val[3]; + } + + explicit FP32Vec16(const FP32Vec4 &data) { + reg.val[0] = data.reg; + reg.val[1] = data.reg; + reg.val[2] = data.reg; + reg.val[3] = data.reg; + } + + explicit FP32Vec16(const FP32Vec8 &data) { + reg.val[0] = data.reg.val[0]; + reg.val[1] = data.reg.val[1]; + reg.val[2] = data.reg.val[0]; + reg.val[3] = data.reg.val[1]; + } + + explicit FP32Vec16(const BF16Vec16 &v) { + reg.val[0] = (__vector float)vec_mergeh(zero, v.reg.val[0]); + reg.val[1] = (__vector float)vec_mergel(zero, v.reg.val[0]); + reg.val[2] = (__vector float)vec_mergeh(zero, v.reg.val[1]); + reg.val[3] = (__vector float)vec_mergel(zero, v.reg.val[1]); + } + + explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {} + + FP32Vec16 operator*(const FP32Vec16 &b) const { + return FP32Vec16(f32x4x4_t({ + vec_mul(reg.val[0], b.reg.val[0]), + vec_mul(reg.val[1], b.reg.val[1]), + vec_mul(reg.val[2], b.reg.val[2]), + vec_mul(reg.val[3], b.reg.val[3])})); + } + + FP32Vec16 operator+(const FP32Vec16 &b) const { + return FP32Vec16(f32x4x4_t({ + vec_add(reg.val[0], b.reg.val[0]), + vec_add(reg.val[1], b.reg.val[1]), + vec_add(reg.val[2], b.reg.val[2]), + vec_add(reg.val[3], b.reg.val[3])})); + } + + FP32Vec16 operator-(const FP32Vec16 &b) const { + return FP32Vec16(f32x4x4_t({ + vec_sub(reg.val[0], b.reg.val[0]), + vec_sub(reg.val[1], b.reg.val[1]), + vec_sub(reg.val[2], b.reg.val[2]), + vec_sub(reg.val[3], b.reg.val[3])})); + } + + FP32Vec16 operator/(const FP32Vec16 &b) const { + return FP32Vec16(f32x4x4_t({ + vec_div(reg.val[0], b.reg.val[0]), + vec_div(reg.val[1], b.reg.val[1]), + vec_div(reg.val[2], b.reg.val[2]), + vec_div(reg.val[3], b.reg.val[3])})); + } + + float reduce_sum() const { + AliasReg ar; + ar.reg = reg; + float result = 0; + unroll_loop([&result, &ar](int i) { result += ar.values[i]; }); + + return result; + } + + template float reduce_sub_sum(int idx) { + static_assert(VEC_ELEM_NUM % group_size == 0); + + AliasReg ar; + ar.reg = reg; + float result = 0; + const int start = idx * group_size; + unroll_loop( + [&result, &start, ar](int i) { result += ar.values[start + i]; }); + + return result; + } + + void save(float *ptr) const { + vec_xst(reg.val[0], 0, ptr); + vec_xst(reg.val[1], 16, ptr); + vec_xst(reg.val[2], 32, ptr); + vec_xst(reg.val[3], 48, ptr); + } +}; + +template struct VecType { using vec_type = void; }; + +template using vec_t = typename VecType::vec_type; + +template <> struct VecType { using vec_type = FP32Vec8; }; + +template <> struct VecType { using vec_type = BF16Vec8; }; + +template void storeFP32(float v, T *ptr) { *ptr = v; } + +inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) { + acc = acc + a * b; +} + +template <> inline void storeFP32(float v, c10::BFloat16 *ptr) { + c10::BFloat16 __attribute__((__may_alias__)) *v_ptr = + reinterpret_cast(&v); + *ptr = *(v_ptr + 1); +} + +#ifndef __VEC_CLASS_FP_NAN +#define __VEC_CLASS_FP_NAN (1 << 6) +#endif + +const static __vector unsigned char omask = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 }; +#ifndef _ARCH_PWR10 +const static __vector unsigned int bias = { 0x00007fff, 0x00007fff, 0x00007fff, 0x00007fff }; +const static __vector unsigned int nan = { 0x7fc00000, 0x7fc00000, 0x7fc00000, 0x7fc00000 }; +const static __vector unsigned int sh16 = { 16, 16, 16, 16 }; +const static __vector unsigned int one = { 1, 1, 1, 1 }; +#endif + +inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) { +#ifdef _ARCH_PWR10 + __vector signed short ret[2]; + ret[0] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[0]); + ret[1] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[1]); + reg = vec_perm(ret[0], ret[1], omask); +#elif defined(_ARCH_PWR9) + __vector unsigned int inp0 = (__vector unsigned int)(v.reg.val[0]); + __vector unsigned int inp1 = (__vector unsigned int)(v.reg.val[1]); + __vector unsigned int lsb0 = vec_sr(inp0, sh16); + __vector unsigned int lsb1 = vec_sr(inp1, sh16); + lsb0 = vec_and(lsb0, one); + lsb1 = vec_and(lsb1, one); + __vector unsigned int rnd0 = vec_add(lsb0, bias); + __vector unsigned int rnd1 = vec_add(lsb1, bias); + inp0 = vec_add(inp0, rnd0); + inp1 = vec_add(inp1, rnd1); + __vector __bool int sel0 = vec_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN); + __vector __bool int sel1 = vec_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN); + inp0 = vec_sel(inp0, nan, sel0); + inp1 = vec_sel(inp1, nan, sel1); + inp0 = vec_sr(inp0, sh16); + inp1 = vec_sr(inp1, sh16); + reg = (__vector signed short)vec_perm(inp0, inp1, omask); +#endif +} + +inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) { +#ifdef _ARCH_PWR10 + __vector signed short ret[4]; + ret[0] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[0]); + ret[1] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[1]); + ret[2] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[2]); + ret[3] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[3]); + reg.val[0] = vec_perm(ret[0], ret[1], omask); + reg.val[1] = vec_perm(ret[2], ret[3], omask); +#elif defined(_ARCH_PWR9) + __vector unsigned int inp0 = (__vector unsigned int)(v.reg.val[0]); + __vector unsigned int inp1 = (__vector unsigned int)(v.reg.val[1]); + __vector unsigned int inp2 = (__vector unsigned int)(v.reg.val[2]); + __vector unsigned int inp3 = (__vector unsigned int)(v.reg.val[3]); + __vector unsigned int lsb0 = vec_sr(inp0, sh16); + __vector unsigned int lsb1 = vec_sr(inp1, sh16); + __vector unsigned int lsb2 = vec_sr(inp2, sh16); + __vector unsigned int lsb3 = vec_sr(inp3, sh16); + lsb0 = vec_and(lsb0, one); + lsb1 = vec_and(lsb1, one); + lsb2 = vec_and(lsb2, one); + lsb3 = vec_and(lsb3, one); + __vector unsigned int rnd0 = vec_add(lsb0, bias); + __vector unsigned int rnd1 = vec_add(lsb1, bias); + __vector unsigned int rnd2 = vec_add(lsb2, bias); + __vector unsigned int rnd3 = vec_add(lsb3, bias); + inp0 = vec_add(inp0, rnd0); + inp1 = vec_add(inp1, rnd1); + inp2 = vec_add(inp2, rnd2); + inp3 = vec_add(inp3, rnd3); + __vector __bool int sel0 = vec_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN); + __vector __bool int sel1 = vec_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN); + __vector __bool int sel2 = vec_test_data_class(v.reg.val[2], __VEC_CLASS_FP_NAN); + __vector __bool int sel3 = vec_test_data_class(v.reg.val[3], __VEC_CLASS_FP_NAN); + inp0 = vec_sel(inp0, nan, sel0); + inp1 = vec_sel(inp1, nan, sel1); + inp2 = vec_sel(inp2, nan, sel2); + inp3 = vec_sel(inp3, nan, sel3); + inp0 = vec_sr(inp0, sh16); + inp1 = vec_sr(inp1, sh16); + inp2 = vec_sr(inp2, sh16); + inp3 = vec_sr(inp3, sh16); + reg.val[0] = (__vector signed short)vec_perm(inp0, inp1, omask); + reg.val[1] = (__vector signed short)vec_perm(inp2, inp3, omask); +#endif +} + +inline void prefetch(const void *addr) { + __asm__ __volatile__("dcbt 0, %0" : : "r"(addr) : "memory"); +} + +}; // namespace vec_op + +#endif diff --git a/csrc/cpu/cpu_types_x86.hpp b/csrc/cpu/cpu_types_x86.hpp new file mode 100644 index 0000000000000..f50620a5287d4 --- /dev/null +++ b/csrc/cpu/cpu_types_x86.hpp @@ -0,0 +1,515 @@ + +#ifndef CPU_TYPES_X86_HPP +#define CPU_TYPES_X86_HPP + +#include +#include + +#ifndef __AVX2__ +static_assert(false, "AVX2 must be supported for the current implementation."); +#endif + +namespace vec_op { + +// FIXME: FP16 is not fully supported in Torch-CPU +#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \ + AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \ + AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) + +#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \ + AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__)) + +#ifndef CPU_OP_GUARD +#define CPU_KERNEL_GUARD_IN(NAME) +#define CPU_KERNEL_GUARD_OUT(NAME) +#else +#define CPU_KERNEL_GUARD_IN(NAME) \ + std::cout << #NAME << " invoked." << std::endl; +#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl; +#endif + +#define FORCE_INLINE __attribute__((always_inline)) inline + +namespace { +template +constexpr void unroll_loop_item(std::integer_sequence, F &&f) { + (f(std::integral_constant{}), ...); +} +}; // namespace + +template >> +constexpr void unroll_loop(F &&f) { + unroll_loop_item(std::make_integer_sequence{}, std::forward(f)); +} + +template struct Vec { + constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; } +}; + +struct FP32Vec8; +struct FP32Vec16; + +#ifdef __AVX512FP16__ +struct FP16Vec8 : public Vec { + constexpr static int VEC_ELEM_NUM = 8; + + __m128h reg; + + explicit FP16Vec8(_Float16 v) : reg(_mm_set1_ph(v)) {} + + explicit FP16Vec8(const void *ptr) : reg(_mm_loadu_ph(ptr)) {} + + explicit FP16Vec8(__m128h data) : reg(data) {} + + FP16Vec8 operator*(const FP16Vec8 &b) const { + return FP16Vec8(_mm_mul_ph(reg, b.reg)); + } + + FP16Vec8 operator+(const FP16Vec8 &b) const { + return FP16Vec8(_mm_add_ph(reg, b.reg)); + } + + FP16Vec8 operator-(const FP16Vec8 &b) const { + return FP16Vec8(_mm_sub_ph(reg, b.reg)); + } + + FP16Vec8 operator/(const FP16Vec8 &b) const { + return FP16Vec8(_mm_div_ph(reg, b.reg)); + } + + void save(void *ptr) const { _mm_storeu_ph(ptr, reg); } +}; +#endif + +struct BF16Vec8 : public Vec { + constexpr static int VEC_ELEM_NUM = 8; + + __m128i reg; + + explicit BF16Vec8(const void *ptr) + : reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {} + + explicit BF16Vec8(const FP32Vec8 &); + + void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; } +}; + +struct BF16Vec16 : public Vec { + constexpr static int VEC_ELEM_NUM = 16; + + __m256i reg; + + explicit BF16Vec16(const void *ptr) + : reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {} + + explicit BF16Vec16(const FP32Vec16 &); + + void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; } +}; + +#ifdef __AVX512F__ +struct BF16Vec32 : public Vec { + constexpr static int VEC_ELEM_NUM = 32; + + __m512i reg; + + explicit BF16Vec32(const void *ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {} + + explicit BF16Vec32(__m512i data) : reg(data) {} + + explicit BF16Vec32(BF16Vec8 &vec8_data) + : reg((__m512i)_mm512_inserti32x4( + _mm512_inserti32x4(_mm512_inserti32x4(_mm512_castsi128_si512( + (__m128i)vec8_data.reg), + (__m128i)vec8_data.reg, 1), + (__m128i)vec8_data.reg, 2), + (__m128i)vec8_data.reg, 3)) {} + + void save(void *ptr) const { *reinterpret_cast<__m512i *>(ptr) = reg; } +}; +#else +struct BF16Vec32 : public Vec { + constexpr static int VEC_ELEM_NUM = 32; + + __m256i reg_low; + __m256i reg_high; + + explicit BF16Vec32(const void *ptr) + : reg_low(_mm256_loadu_si256((__m256i const *)ptr)), + reg_high(_mm256_loadu_si256((__m256i const *)ptr + 1)) {} + + explicit BF16Vec32(__m256i low, __m256i high) : reg_low(low), + reg_high(high) {} + + explicit BF16Vec32(BF16Vec8 &vec8_data) + : reg_low((__m256i)_mm256_inserti32x4( + _mm256_castsi128_si256((__m128i)vec8_data.reg), + (__m128i)vec8_data.reg, 1)), + reg_high((__m256i)_mm256_inserti32x4( + _mm256_castsi128_si256((__m128i)vec8_data.reg), + (__m128i)vec8_data.reg, 1)) {} + + void save(void *ptr) const { + *reinterpret_cast<__m256i *>(ptr) = reg_low; + *reinterpret_cast<__m256i *>((__m256i *)ptr + 1) = reg_high; + } +}; +#endif + +struct FP32Vec4 : public Vec { + constexpr static int VEC_ELEM_NUM = 4; + union AliasReg { + __m128 reg; + float values[VEC_ELEM_NUM]; + }; + + __m128 reg; + + explicit FP32Vec4(float v) : reg(_mm_set1_ps(v)) {} + + explicit FP32Vec4() : reg(_mm_set1_ps(0.0)) {} + + explicit FP32Vec4(const float *ptr) : reg(_mm_loadu_ps(ptr)) {} + + explicit FP32Vec4(__m128 data) : reg(data) {} + + explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {} +}; + +struct FP32Vec8 : public Vec { + constexpr static int VEC_ELEM_NUM = 8; + union AliasReg { + __m256 reg; + float values[VEC_ELEM_NUM]; + }; + + __m256 reg; + + explicit FP32Vec8(float v) : reg(_mm256_set1_ps(v)) {} + + explicit FP32Vec8() : reg(_mm256_set1_ps(0.0)) {} + + explicit FP32Vec8(const float *ptr) : reg(_mm256_loadu_ps(ptr)) {} + + explicit FP32Vec8(__m256 data) : reg(data) {} + + explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {} + +#ifdef __AVX512FP16__ + explicit FP32Vec8(__m128h v) : reg(_mm256_cvtph_ps(_mm_castph_si128(v))) {} +#endif + + explicit FP32Vec8(const BF16Vec8 &v) + : reg(_mm256_castsi256_ps( + _mm256_bslli_epi128(_mm256_cvtepu16_epi32(v.reg), 2))) {} + + float reduce_sum() const { + AliasReg ar; + ar.reg = reg; + float result = 0; + unroll_loop([&result, &ar](int i) { result += ar.values[i]; }); + + return result; + } + + FP32Vec8 exp() const { + AliasReg ar; + ar.reg = reg; + return FP32Vec8(_mm256_set_ps(expf(ar.values[7]), expf(ar.values[6]), + expf(ar.values[5]), expf(ar.values[4]), + expf(ar.values[3]), expf(ar.values[2]), + expf(ar.values[1]), expf(ar.values[0]))); + } + + FP32Vec8 tanh() const { + AliasReg ar; + ar.reg = reg; + return FP32Vec8(_mm256_set_ps(tanhf(ar.values[7]), tanhf(ar.values[6]), + tanhf(ar.values[5]), tanhf(ar.values[4]), + tanhf(ar.values[3]), tanhf(ar.values[2]), + tanhf(ar.values[1]), tanhf(ar.values[0]))); + } + + FP32Vec8 er() const { + AliasReg ar; + ar.reg = reg; + return FP32Vec8(_mm256_set_ps(erf(ar.values[7]), erf(ar.values[6]), + erf(ar.values[5]), erf(ar.values[4]), + erf(ar.values[3]), erf(ar.values[2]), + erf(ar.values[1]), erf(ar.values[0]))); + } + + FP32Vec8 operator*(const FP32Vec8 &b) const { + return FP32Vec8(_mm256_mul_ps(reg, b.reg)); + } + + FP32Vec8 operator+(const FP32Vec8 &b) const { + return FP32Vec8(_mm256_add_ps(reg, b.reg)); + } + + FP32Vec8 operator-(const FP32Vec8 &b) const { + return FP32Vec8(_mm256_sub_ps(reg, b.reg)); + } + + FP32Vec8 operator/(const FP32Vec8 &b) const { + return FP32Vec8(_mm256_div_ps(reg, b.reg)); + } + + void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); } +}; + +#ifdef __AVX512F__ +struct FP32Vec16 : public Vec { + constexpr static int VEC_ELEM_NUM = 16; + union AliasReg { + __m512 reg; + float values[VEC_ELEM_NUM]; + }; + + __m512 reg; + + explicit FP32Vec16(float v) : reg(_mm512_set1_ps(v)) {} + + explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {} + + explicit FP32Vec16(const float *ptr) : reg(_mm512_loadu_ps(ptr)) {} + + explicit FP32Vec16(__m512 data) : reg(data) {} + + explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {} + + explicit FP32Vec16(const FP32Vec4 &data) + : reg((__m512)_mm512_inserti32x4( + _mm512_inserti32x4( + _mm512_inserti32x4(_mm512_castsi128_si512((__m128i)data.reg), + (__m128i)data.reg, 1), + (__m128i)data.reg, 2), + (__m128i)data.reg, 3)) {} + + explicit FP32Vec16(const FP32Vec8 &data) + : reg((__m512)_mm512_inserti32x8( + _mm512_castsi256_si512((__m256i)data.reg), (__m256i)data.reg, 1)) {} + + explicit FP32Vec16(const BF16Vec16 &v) + : reg(_mm512_castsi512_ps( + _mm512_bslli_epi128(_mm512_cvtepu16_epi32(v.reg), 2))) {} + + explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {} + + FP32Vec16 operator*(const FP32Vec16 &b) const { + return FP32Vec16(_mm512_mul_ps(reg, b.reg)); + } + + FP32Vec16 operator+(const FP32Vec16 &b) const { + return FP32Vec16(_mm512_add_ps(reg, b.reg)); + } + + FP32Vec16 operator-(const FP32Vec16 &b) const { + return FP32Vec16(_mm512_sub_ps(reg, b.reg)); + } + + FP32Vec16 operator/(const FP32Vec16 &b) const { + return FP32Vec16(_mm512_div_ps(reg, b.reg)); + } + + float reduce_sum() const { return _mm512_reduce_add_ps(reg); } + + template float reduce_sub_sum(int idx) { + static_assert(VEC_ELEM_NUM % group_size == 0); + constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size)); + __mmask16 mask = _cvtu32_mask16(base_mask << (idx * group_size)); + return _mm512_mask_reduce_add_ps(mask, reg); + } + + void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); } +}; +#else +struct FP32Vec16 : public Vec { + constexpr static int VEC_ELEM_NUM = 16; + + union AliasReg { + __m256 reg; + float values[8]; + }; + + __m256 reg_low; + __m256 reg_high; + + explicit FP32Vec16(float v) : reg_low(_mm256_set1_ps(v)), + reg_high(_mm256_set1_ps(v)) {} + + explicit FP32Vec16() : reg_low(_mm256_set1_ps(0.0)), + reg_high(_mm256_set1_ps(0.0)) {} + + explicit FP32Vec16(const float *ptr) : reg_low(_mm256_loadu_ps(ptr)), + reg_high(_mm256_loadu_ps(ptr + 8)) {} + + explicit FP32Vec16(__m256 low, __m256 high) : reg_low(low), reg_high(high) {} + + explicit FP32Vec16(const FP32Vec16 &data) : reg_low(data.reg_low), + reg_high(data.reg_high) {} + + explicit FP32Vec16(const FP32Vec4 &data) + : reg_low((__m256)_mm256_inserti128_si256( + _mm256_castsi128_si256((__m128i)data.reg), + (__m128i)data.reg, 1)), + reg_high((__m256)_mm256_inserti128_si256( + _mm256_castsi128_si256((__m128i)data.reg), + (__m128i)data.reg, 1)) {} + + explicit FP32Vec16(const FP32Vec8 &data) + : reg_low(data.reg), reg_high(data.reg) {} + + explicit FP32Vec16(const BF16Vec16 &v) { + __m128i low = _mm256_extractf128_si256(v.reg, 0); + __m128i high = _mm256_extractf128_si256(v.reg, 1); + + __m256i v_low_epi32 = _mm256_cvtepu16_epi32(low); + __m256i v_high_epi32 = _mm256_cvtepu16_epi32(high); + + __m256i v_low_shifted = _mm256_bslli_epi128(v_low_epi32, 2); + __m256i v_high_shifted = _mm256_bslli_epi128(v_high_epi32, 2); + + reg_low = _mm256_castsi256_ps(v_low_shifted); + reg_high = _mm256_castsi256_ps(v_high_shifted); + } + + explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {} + + FP32Vec16 operator*(const FP32Vec16 &b) const { + return FP32Vec16(_mm256_mul_ps(reg_low, b.reg_low), + _mm256_mul_ps(reg_high, b.reg_high)); + } + + FP32Vec16 operator+(const FP32Vec16 &b) const { + return FP32Vec16(_mm256_add_ps(reg_low, b.reg_low), + _mm256_add_ps(reg_high, b.reg_high)); + } + + FP32Vec16 operator-(const FP32Vec16 &b) const { + return FP32Vec16(_mm256_sub_ps(reg_low, b.reg_low), + _mm256_sub_ps(reg_high, b.reg_high)); + } + + FP32Vec16 operator/(const FP32Vec16 &b) const { + return FP32Vec16(_mm256_div_ps(reg_low, b.reg_low), + _mm256_div_ps(reg_high, b.reg_high)); + } + + float reduce_sum() const { + FP32Vec8 low = FP32Vec8(reg_low); + FP32Vec8 high = FP32Vec8(reg_high); + return low.reduce_sum() + high.reduce_sum(); + } + + template float reduce_sub_sum(int idx) { + float sum = 0.0; + static_assert(VEC_ELEM_NUM % group_size == 0); + constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size)); + uint32_t mask = base_mask << (idx * group_size); + + AliasReg ar; + + auto func = [&sum, &mask, &ar](int i) { + int flag = mask & 0x1; + mask = mask >> 1; + if (flag != 0) sum += ar.values[i]; + }; + + ar.reg = reg_low; + unroll_loop(func); + + ar.reg = reg_high; + unroll_loop(func); + + return sum; + } + + void save(float *ptr) const { + _mm256_storeu_ps(ptr, reg_low); + _mm256_storeu_ps(ptr + 8, reg_high); + } +}; +#endif + +template struct VecType { using vec_type = void; }; + +template using vec_t = typename VecType::vec_type; + +template <> struct VecType { using vec_type = FP32Vec8; }; + +#ifdef __AVX512FP16__ +template <> struct VecType { using vec_type = FP16Vec16; }; +#endif + +template <> struct VecType { using vec_type = BF16Vec8; }; + +template void storeFP32(float v, T *ptr) { *ptr = v; } + +#ifdef __AVX512FP16__ +template <> inline void storeFP32(float v, c10::Half *ptr) { + *reinterpret_cast<_Float16 *>(ptr) = v; +} +#endif + +inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) { + acc = acc + a * b; +} + +#ifdef __AVX512BF16__ +template <> inline void storeFP32(float v, c10::BFloat16 *ptr) { + *reinterpret_cast<__bfloat16 *>(ptr) = _mm_cvtness_sbh(v); +} + +inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) + : reg((__m128i)_mm256_cvtneps_pbh(v.reg)) {} + +inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) + : reg((__m256i)_mm512_cvtneps_pbh(v.reg)) {} + +inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) { + acc.reg = _mm512_dpbf16_ps(acc.reg, (__m512bh)a.reg, (__m512bh)b.reg); +} +#else +template <> inline void storeFP32(float v, c10::BFloat16 *ptr) { + c10::BFloat16 __attribute__((__may_alias__)) *v_ptr = + reinterpret_cast(&v); + *ptr = *(v_ptr + 1); +} + +#ifdef __AVX512F__ +inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) + : reg(_mm256_cvtepi32_epi16( + _mm256_bsrli_epi128(_mm256_castps_si256(v.reg), 2))) {} + +inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) + : reg(_mm512_cvtepi32_epi16( + _mm512_bsrli_epi128(_mm512_castps_si512(v.reg), 2))) {} +#else +namespace{ +__m128i FP32Vec8_to_BF16Vec8_avx2(__m256 a) { + __m256i ai = _mm256_castps_si256(a); + ai = _mm256_srli_epi32(ai, 16); + ai = _mm256_packus_epi32(ai, ai); + ai = _mm256_permute4x64_epi64(ai, 0b00111001); + return _mm256_extracti128_si256(ai, 0); +} +} + +inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) + : reg(FP32Vec8_to_BF16Vec8_avx2(v.reg)) {} + +inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) { + BF16Vec8 low = BF16Vec8(FP32Vec8(v.reg_low)); + BF16Vec8 high = BF16Vec8(FP32Vec8(v.reg_high)); + reg = _mm256_insertf128_si256(_mm256_castsi128_si256(low.reg), high.reg, 1); +} +#endif // __AVX512F__ +#endif // __AVX512BF16__ + +inline void prefetch(const void *addr) { _mm_prefetch(addr, _MM_HINT_T1); } + +}; // namespace vec_op + +#endif diff --git a/csrc/ops.h b/csrc/ops.h index 6f0a7143c9169..8a92afdc81a9b 100644 --- a/csrc/ops.h +++ b/csrc/ops.h @@ -1,5 +1,6 @@ #pragma once +#include #include void paged_attention_v1( @@ -96,7 +97,8 @@ bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability); void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, - torch::Tensor const& b_scales); + torch::Tensor const& b_scales, + c10::optional const& bias); #endif diff --git a/csrc/punica/bgmv/bgmv_config.h b/csrc/punica/bgmv/bgmv_config.h old mode 100755 new mode 100644 index cb6694b3036e9..2c8d007d8719f --- a/csrc/punica/bgmv/bgmv_config.h +++ b/csrc/punica/bgmv/bgmv_config.h @@ -86,6 +86,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X, f(in_T, out_T, W_T, narrow, 36864) \ f(in_T, out_T, W_T, narrow, 43264) \ f(in_T, out_T, W_T, narrow, 49152) \ + f(in_T, out_T, W_T, narrow, 49408) \ f(in_T, out_T, W_T, narrow, 60544) \ f(in_T, out_T, W_T, narrow, 60672) \ f(in_T, out_T, W_T, narrow, 64000) \ @@ -182,6 +183,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X, f(in_T, out_T, W_T, 36864, narrow) \ f(in_T, out_T, W_T, 43264, narrow) \ f(in_T, out_T, W_T, 49152, narrow) \ + f(in_T, out_T, W_T, 49408, narrow) \ f(in_T, out_T, W_T, 60544, narrow) \ f(in_T, out_T, W_T, 60672, narrow) \ f(in_T, out_T, W_T, 64000, narrow) \ diff --git a/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu b/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu index 38a20a1727d18..6ce25c5ac897b 100644 --- a/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu +++ b/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu @@ -77,24 +77,12 @@ struct enable_sm89_to_sm90 : Kernel { }; /* - This epilogue function defines a quantized GEMM operation similar to - torch._scaled_mm. - - A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or - per-row. B can be quantized per-tensor or per-column. - Any combination of per-tensor and per-row or column is supported. - A and B must have symmetric quantization (zero point == 0). - - So the GEMM operation is D = (a_scales * A) (b_scales * B), where the - scales are applied elementwise with numpy-style broadcasting. - - ScaleA and ScaleB define the epilogue functions that apply the scales for - the A and B operands respectively. These scales may be either per-tensor or - per row or column. -*/ + * This class provides the common ScaleA and ScaleB descriptors for the + * ScaledEpilogue and ScaledEpilogueBias classes. + */ template -struct ScaledEpilogue { - private: +struct ScaledEpilogueBase { + protected: using Accum = cutlass::epilogue::threadblock::VisitorAccFetch; using ScaleA = cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast< @@ -102,6 +90,32 @@ struct ScaledEpilogue { using ScaleB = cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast< OutputTileThreadMap, float, Stride, Int<1>, Int<0>>>; +}; + +/* + This epilogue function defines a quantized GEMM operation similar to + torch._scaled_mm. + + A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or + per-row. B can be quantized per-tensor or per-column. + Any combination of per-tensor and per-row or column is supported. + A and B must have symmetric quantization (zero point == 0). + + So the GEMM operation is D = (a_scales * A) (b_scales * B), where the + scales are applied elementwise with numpy-style broadcasting. + + ScaleA and ScaleB define the epilogue functions that apply the scales for + the A and B operands respectively. These scales may be either per-tensor or + per row or column. +*/ +template +struct ScaledEpilogue + : private ScaledEpilogueBase { + private: + using SUPER = ScaledEpilogueBase; + using Accum = typename SUPER::Accum; + using ScaleA = typename SUPER::ScaleA; + using ScaleB = typename SUPER::ScaleB; using Compute0 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::multiplies, float, float, @@ -134,6 +148,53 @@ struct ScaledEpilogue { } }; +template +struct ScaledEpilogueBias + : private ScaledEpilogueBase { + private: + using SUPER = ScaledEpilogueBase; + using Accum = typename SUPER::Accum; + using ScaleA = typename SUPER::ScaleA; + using ScaleB = typename SUPER::ScaleB; + + using Compute0 = cutlass::epilogue::threadblock::VisitorCompute< + cutlass::multiplies, float, float, + cutlass::FloatRoundStyle::round_to_nearest>; + + using EVTCompute0 = + cutlass::epilogue::threadblock::Sm80EVT; + + using Compute1 = cutlass::epilogue::threadblock::VisitorCompute< + cutlass::multiply_add, ElementD, float, + cutlass::FloatRoundStyle::round_to_nearest>; + + using Bias = cutlass::epilogue::threadblock::VisitorRowBroadcast< + OutputTileThreadMap, ElementD, Stride, Int<1>, Int<0>>>; + + public: + using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT; + using ArgumentType = typename EVTCompute::Arguments; + + static ArgumentType prepare_args(torch::Tensor const& a_scales, + torch::Tensor const& b_scales, + torch::Tensor const& bias) { + using ScaleAArgs = typename ScaleA::Arguments; + using ScaleBArgs = typename ScaleB::Arguments; + using BiasArgs = typename Bias::Arguments; + + ScaleBArgs b_args{b_scales.data_ptr(), b_scales.numel() != 1, {}}; + ScaleAArgs a_args{a_scales.data_ptr(), a_scales.numel() != 1, {}}; + BiasArgs bias_args{static_cast(bias.data_ptr()), {}}; + + typename EVTCompute0::Arguments evt0_compute_args{b_args}; + + typename EVTCompute::Arguments evt_compute_args{a_args, evt0_compute_args, + bias_args}; + return evt_compute_args; + } +}; + template typename ArchGuard, typename ElementAB_, typename ElementD_, template typename Epilogue_, typename TileShape, @@ -168,13 +229,13 @@ struct cutlass_2x_gemm { // clang-format off using RowMajor = typename cutlass::layout::RowMajor; using ColumnMajor = typename cutlass::layout::ColumnMajor; - using KernelType = + using KernelType = ArchGuard typename Epilogue, + typename... EpilogueArgs> +void cutlass_scaled_mm_sm75_epilogue(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& b, + EpilogueArgs&&... epilogue_args) { TORCH_CHECK(a.dtype() == torch::kInt8); TORCH_CHECK(b.dtype() == torch::kInt8); - TORCH_CHECK(a_scales.dtype() == torch::kFloat32); - TORCH_CHECK(b_scales.dtype() == torch::kFloat32); using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>; @@ -420,78 +480,130 @@ void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a, if (out.dtype() == torch::kBFloat16) { return cutlass_gemm_caller>( - out, a, b, a_scales, b_scales); + Epilogue, TileShape, WarpShape, InstructionShape, 2>>( + out, a, b, std::forward(epilogue_args)...); } else { TORCH_CHECK(out.dtype() == torch::kFloat16); return cutlass_gemm_caller>( - out, a, b, a_scales, b_scales); + Epilogue, TileShape, WarpShape, InstructionShape, 2>>( + out, a, b, std::forward(epilogue_args)...); } } -void cutlass_scaled_mm_sm80(torch::Tensor& out, torch::Tensor const& a, +void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, - torch::Tensor const& b_scales) { - TORCH_CHECK(a.dtype() == torch::kInt8); - TORCH_CHECK(b.dtype() == torch::kInt8); + torch::Tensor const& b_scales, + c10::optional const& bias) { TORCH_CHECK(a_scales.dtype() == torch::kFloat32); TORCH_CHECK(b_scales.dtype() == torch::kFloat32); + if (bias) { + TORCH_CHECK(bias->dtype() == out.dtype(), + "currently bias dtype must match output dtype ", out.dtype()); + return cutlass_scaled_mm_sm75_epilogue( + out, a, b, a_scales, b_scales, *bias); + } else { + return cutlass_scaled_mm_sm75_epilogue(out, a, b, a_scales, + b_scales); + } +} + +template