forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix_utils.cc
247 lines (225 loc) · 9 KB
/
matrix_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/lp_data/matrix_utils.h"
#include <algorithm>
#include "ortools/base/hash.h"
namespace operations_research {
namespace glop {
namespace {
// Returns true iff the two given sparse columns are proportional. The two
// sparse columns must be ordered by row and must not contain any zero entry.
//
// See the header comment on FindProportionalColumns() for the exact definition
// of two proportional columns with a given tolerance.
bool AreColumnsProportional(const SparseColumn& a, const SparseColumn& b,
Fractional tolerance) {
DCHECK(a.IsCleanedUp());
DCHECK(b.IsCleanedUp());
if (a.num_entries() != b.num_entries()) return false;
Fractional multiple = 0.0;
bool a_is_larger = true;
for (const EntryIndex i : a.AllEntryIndices()) {
if (a.EntryRow(i) != b.EntryRow(i)) return false;
const Fractional coeff_a = a.EntryCoefficient(i);
const Fractional coeff_b = b.EntryCoefficient(i);
if (multiple == 0.0) {
a_is_larger = std::abs(coeff_a) > std::abs(coeff_b);
multiple = a_is_larger ? coeff_a / coeff_b : coeff_b / coeff_a;
} else {
if (a_is_larger) {
if (std::abs(coeff_a / coeff_b - multiple) > tolerance) return false;
} else {
if (std::abs(coeff_b / coeff_a - multiple) > tolerance) return false;
}
}
}
return true;
}
// A column index together with its fingerprint. See ComputeFingerprint().
struct ColumnFingerprint {
ColumnFingerprint(ColIndex _col, int64 _hash, double _value)
: col(_col), hash(_hash), value(_value) {}
ColIndex col;
int64 hash;
double value;
// This order has the property that if AreProportionalCandidates() is true for
// two given columns, then in a sorted list of columns
// AreProportionalCandidates() will be true for all the pairs of columns
// between the two given ones (included).
bool operator<(const ColumnFingerprint& other) const {
if (hash == other.hash) {
return value < other.value;
}
return hash < other.hash;
}
};
// Two columns can be proportional only if:
// - Their non-zero pattern hashes are the same.
// - Their double fingerprints are close to each other.
bool AreProportionalCandidates(ColumnFingerprint a, ColumnFingerprint b,
Fractional tolerance) {
if (a.hash != b.hash) return false;
return std::abs(a.value - b.value) < tolerance;
}
// The fingerprint of a column has two parts:
// - A hash value of the column non-zero pattern.
// - A double value which should be the same for two proportional columns
// modulo numerical errors.
ColumnFingerprint ComputeFingerprint(ColIndex col, const SparseColumn& column) {
int64 non_zero_pattern_hash = 0;
Fractional min_abs = std::numeric_limits<Fractional>::max();
Fractional max_abs = 0.0;
Fractional sum = 0.0;
for (const SparseColumn::Entry e : column) {
non_zero_pattern_hash =
util_hash::Hash(e.row().value(), non_zero_pattern_hash);
sum += e.coefficient();
min_abs = std::min(min_abs, std::abs(e.coefficient()));
max_abs = std::max(max_abs, std::abs(e.coefficient()));
}
// The two scaled values are in [0, 1].
// TODO(user): A better way to discriminate columns would be to take the
// scalar product with a constant but random vector scaled by max_abs.
DCHECK_NE(0.0, max_abs);
const double inverse_dynamic_range = min_abs / max_abs;
const double scaled_average =
std::abs(sum) /
(static_cast<double>(column.num_entries().value()) * max_abs);
return ColumnFingerprint(col, non_zero_pattern_hash,
inverse_dynamic_range + scaled_average);
}
} // namespace
ColMapping FindProportionalColumns(const SparseMatrix& matrix,
Fractional tolerance) {
const ColIndex num_cols = matrix.num_cols();
ColMapping mapping(num_cols, kInvalidCol);
// Compute the fingerprint of each columns and sort them.
std::vector<ColumnFingerprint> fingerprints;
for (ColIndex col(0); col < num_cols; ++col) {
if (!matrix.column(col).IsEmpty()) {
fingerprints.push_back(ComputeFingerprint(col, matrix.column(col)));
}
}
std::sort(fingerprints.begin(), fingerprints.end());
// Find a representative of each proportional columns class. This only
// compares columns with a close-enough fingerprint.
for (int i = 0; i < fingerprints.size(); ++i) {
const ColIndex col_a = fingerprints[i].col;
if (mapping[col_a] != kInvalidCol) continue;
for (int j = i + 1; j < fingerprints.size(); ++j) {
const ColIndex col_b = fingerprints[j].col;
if (mapping[col_b] != kInvalidCol) continue;
// Note that we use the same tolerance for the fingerprints.
// TODO(user): Derive precise bounds on what this tolerance should be so
// that no proportional columns are missed.
if (!AreProportionalCandidates(fingerprints[i], fingerprints[j],
tolerance)) {
break;
}
if (AreColumnsProportional(matrix.column(col_a), matrix.column(col_b),
tolerance)) {
mapping[col_b] = col_a;
}
}
}
// Sort the mapping so that the representative of each class is the smallest
// column. To achieve this, the current representative is used as a pointer
// to the new one, a bit like in an union find algorithm.
for (ColIndex col(0); col < num_cols; ++col) {
if (mapping[col] == kInvalidCol) continue;
const ColIndex new_representative = mapping[mapping[col]];
if (new_representative != kInvalidCol) {
mapping[col] = new_representative;
} else {
if (mapping[col] > col) {
mapping[mapping[col]] = col;
mapping[col] = kInvalidCol;
}
}
}
return mapping;
}
ColMapping FindProportionalColumnsUsingSimpleAlgorithm(
const SparseMatrix& matrix, Fractional tolerance) {
const ColIndex num_cols = matrix.num_cols();
ColMapping mapping(num_cols, kInvalidCol);
for (ColIndex col_a(0); col_a < num_cols; ++col_a) {
if (matrix.column(col_a).IsEmpty()) continue;
if (mapping[col_a] != kInvalidCol) continue;
for (ColIndex col_b(col_a + 1); col_b < num_cols; ++col_b) {
if (matrix.column(col_b).IsEmpty()) continue;
if (mapping[col_b] != kInvalidCol) continue;
if (AreColumnsProportional(matrix.column(col_a), matrix.column(col_b),
tolerance)) {
mapping[col_b] = col_a;
}
}
}
return mapping;
}
bool AreFirstColumnsAndRowsExactlyEquals(RowIndex num_rows, ColIndex num_cols,
const SparseMatrix& matrix_a,
const CompactSparseMatrix& matrix_b) {
// TODO(user): Also DCHECK() that matrix_b is ordered by rows.
DCHECK(matrix_a.IsCleanedUp());
if (num_rows > matrix_a.num_rows() || num_rows > matrix_b.num_rows() ||
num_cols > matrix_a.num_cols() || num_cols > matrix_b.num_cols()) {
return false;
}
for (ColIndex col(0); col < num_cols; ++col) {
const SparseColumn& col_a = matrix_a.column(col);
const ColumnView& col_b = matrix_b.column(col);
const EntryIndex end = std::min(col_a.num_entries(), col_b.num_entries());
if (end < col_a.num_entries() && col_a.EntryRow(end) < num_rows) {
return false;
}
if (end < col_b.num_entries() && col_b.EntryRow(end) < num_rows) {
return false;
}
for (EntryIndex i(0); i < end; ++i) {
if (col_a.EntryRow(i) != col_b.EntryRow(i)) {
if (col_a.EntryRow(i) < num_rows || col_b.EntryRow(i) < num_rows) {
return false;
} else {
break;
}
}
if (col_a.EntryCoefficient(i) != col_b.EntryCoefficient(i)) {
return false;
}
if (col_a.num_entries() > end && col_a.EntryRow(end) < num_rows) {
return false;
}
if (col_b.num_entries() > end && col_b.EntryRow(end) < num_rows) {
return false;
}
}
}
return true;
}
bool IsRightMostSquareMatrixIdentity(const SparseMatrix& matrix) {
DCHECK(matrix.IsCleanedUp());
if (matrix.num_rows().value() > matrix.num_cols().value()) return false;
const ColIndex first_identity_col =
matrix.num_cols() - RowToColIndex(matrix.num_rows());
for (ColIndex col = first_identity_col; col < matrix.num_cols(); ++col) {
const SparseColumn& column = matrix.column(col);
if (column.num_entries() != 1 ||
column.EntryCoefficient(EntryIndex(0)) != 1.0) {
return false;
}
}
return true;
}
} // namespace glop
} // namespace operations_research