forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lp_decomposer.h
93 lines (77 loc) · 3.33 KB
/
lp_decomposer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_LP_DATA_LP_DECOMPOSER_H_
#define OR_TOOLS_LP_DATA_LP_DECOMPOSER_H_
#include <memory>
#include <vector>
#include "absl/synchronization/mutex.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
namespace operations_research {
namespace glop {
// This class is used to decompose an existing LinearProgram into several
// independent LinearPrograms. Problems are independent when none of their
// variables are connected, i.e. appear in the same constraints.
// Consider for instance the following problem:
// min: x + 2 y + 3 z + 4 t + 5 u
// c1: 0 <= x + z <= 1;
// c2: 0 <= y + t <= 1;
// c3: 0 <= x + u <= 1;
// int: x, y, z, t, u
// Variables x, z and u are connected by constraints c1 and c3.
// Variables y and t are connected by constraints c2.
// The problem can be decomposed into two independent problems:
// min: x + 3 z + 5 u
// c1: 0 <= x + z <= 1;
// c3: 0 <= x + u <= 1;
// int: x, z, u
// and
// min: 2 y + 4 t
// c2: 0 <= y + t <= 1;
// int: y, t
//
// Note that a solution to those two independent problems is a solution to the
// original problem.
class LPDecomposer {
public:
LPDecomposer();
// Decomposes the problem into independent problems.
// Note that a pointer is kept (no copy) on the linear_problem, so the problem
// should not change during the life of the LPDecomposer object.
void Decompose(const LinearProgram* linear_problem) LOCKS_EXCLUDED(mutex_);
// Returns the number of independent problems generated by Decompose().
int GetNumberOfProblems() const LOCKS_EXCLUDED(mutex_);
// Returns the original problem, i.e. as it was before any decomposition.
const LinearProgram& original_problem() const LOCKS_EXCLUDED(mutex_);
// Fills lp with the problem_index^th independent problem generated by
// Decompose().
// Note that this method runs in O(num-entries-in-generated-problem).
void ExtractLocalProblem(int problem_index, LinearProgram* lp)
LOCKS_EXCLUDED(mutex_);
// Returns an assignment to the original problem based on the assignments
// to the independent problems. Requires Decompose() to have been called.
DenseRow AggregateAssignments(const std::vector<DenseRow>& assignments) const
LOCKS_EXCLUDED(mutex_);
// Returns an assignment to the given subproblem based on the assignment to
// the original problem. Requires Decompose() to have been called.
DenseRow ExtractLocalAssignment(int problem_index, const DenseRow& assignment)
LOCKS_EXCLUDED(mutex_);
private:
const LinearProgram* original_problem_;
std::vector<std::vector<ColIndex>> clusters_;
mutable absl::Mutex mutex_;
DISALLOW_COPY_AND_ASSIGN(LPDecomposer);
};
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_LP_DATA_LP_DECOMPOSER_H_