forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lp_data_utils.cc
77 lines (66 loc) · 3.08 KB
/
lp_data_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/lp_data/lp_data_utils.h"
namespace operations_research {
namespace glop {
void ComputeSlackVariablesValues(const LinearProgram& linear_program,
DenseRow* values) {
DCHECK(values);
DCHECK_EQ(linear_program.num_variables(), values->size());
// If there are no slack variable, we can give up.
if (linear_program.GetFirstSlackVariable() == kInvalidCol) return;
const auto& transposed_matrix = linear_program.GetTransposeSparseMatrix();
for (RowIndex row(0); row < linear_program.num_constraints(); row++) {
const ColIndex slack_variable = linear_program.GetSlackVariable(row);
if (slack_variable == kInvalidCol) continue;
DCHECK_EQ(0.0, linear_program.constraint_lower_bounds()[row]);
DCHECK_EQ(0.0, linear_program.constraint_upper_bounds()[row]);
const RowIndex transposed_slack = ColToRowIndex(slack_variable);
Fractional activation = 0.0;
// Row in the initial matrix (column in the transposed).
const SparseColumn& sparse_row =
transposed_matrix.column(RowToColIndex(row));
for (const auto& entry : sparse_row) {
if (transposed_slack == entry.index()) continue;
activation +=
(*values)[RowToColIndex(entry.index())] * entry.coefficient();
}
(*values)[slack_variable] = -activation;
}
}
// This is separated from the LinearProgram class because of a cyclic dependency
// when scaling as an LP.
void Scale(LinearProgram* lp, SparseMatrixScaler* scaler) {
// Create GlopParameters proto to get default scaling algorithm.
GlopParameters params;
Scale(lp, scaler, params.scaling_method());
}
// This is separated from LinearProgram class because of a cyclic dependency
// when scaling as an LP.
void Scale(LinearProgram* lp, SparseMatrixScaler* scaler,
GlopParameters::ScalingAlgorithm scaling_method) {
scaler->Init(&lp->matrix_);
scaler->Scale(
scaling_method); // Compute R and C, and replace the matrix A by R.A.C
scaler->ScaleRowVector(false,
&lp->objective_coefficients_); // oc = oc.C
scaler->ScaleRowVector(true,
&lp->variable_upper_bounds_); // cl = cl.C^-1
scaler->ScaleRowVector(true,
&lp->variable_lower_bounds_); // cu = cu.C^-1
scaler->ScaleColumnVector(false, &lp->constraint_upper_bounds_); // rl = R.rl
scaler->ScaleColumnVector(false, &lp->constraint_lower_bounds_); // ru = R.ru
lp->transpose_matrix_is_consistent_ = false;
}
} // namespace glop
} // namespace operations_research