forked from CellProfiler/CellProfiler-plugins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeclumpobjects.py
296 lines (235 loc) · 10.6 KB
/
declumpobjects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding=utf-8
"""
DeclumpObjects
==============
**DeclumpObjects** will split objects based on a seeded watershed method
#. Compute the `local maxima`_ (either through the `Euclidean distance transformation`_
of the segmented objects or through the intensity values of a reference image
#. Dilate the seeds as specified
#. Use these seeds as markers for watershed
NOTE: This implementation is based off of the **IdentifyPrimaryObjects** declumping implementation.
For more information, see the aforementioned module.
.. _Euclidean distance transformation: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html
.. _local maxima: http://scikit-image.org/docs/dev/api/skimage.feature.html#peak-local-max
|
============ ============ ===============
Supports 2D? Supports 3D? Respects masks?
============ ============ ===============
YES YES NO
============ ============ ===============
"""
import numpy
import skimage.morphology
import skimage.segmentation
import scipy.ndimage
import skimage.filters
import skimage.feature
import skimage.util
import cellprofiler_core.image
import cellprofiler_core.module
import cellprofiler_core.setting
import cellprofiler_core.setting.text
import cellprofiler_core.setting.choice
import cellprofiler_core.object
from cellprofiler_core.module.image_segmentation import ObjectProcessing
from cellprofiler_core.setting.subscriber import ImageSubscriber
O_SHAPE = "Shape"
O_INTENSITY = "Intensity"
class DeclumpObjects(ObjectProcessing):
category = "Advanced"
module_name = "DeclumpObjects"
variable_revision_number = 1
def create_settings(self):
super(DeclumpObjects, self).create_settings()
self.declump_method = cellprofiler_core.setting.choice.Choice(
text="Declump method",
choices=[O_SHAPE, O_INTENSITY],
value=O_SHAPE,
doc="""\
This setting allows you to choose the method that is used to draw the
line between segmented objects.
- *{O_SHAPE}:* Dividing lines between clumped objects are based on
the shape of the clump. For example, when a clump contains two
objects, the dividing line will be placed where indentations occur
between the two objects. The intensity of the original image is
not necessary in this case.
**Technical description:** The distance transform of the segmentation
is used to identify local maxima as seeds (i.e. the centers of the
individual objects), and the seeds are then used on the inverse of
that distance transform to determine new segmentations via watershed.
- *{O_INTENSITY}:* Dividing lines between clumped objects are determined
based on the intensity of the original image. This works best if the
dividing line between objects is dimmer than the objects themselves.
**Technical description:** The distance transform of the segmentation
is used to identify local maxima as seeds (i.e. the centers of the
individual objects). Those seeds are then used as markers for a
watershed on the inverted original intensity image.
""".format(**{
"O_SHAPE": O_SHAPE,
"O_INTENSITY": O_INTENSITY
})
)
self.reference_name = ImageSubscriber(
text="Reference Image",
doc="Image to reference for the *{O_INTENSITY}* method".format(**{"O_INTENSITY": O_INTENSITY})
)
self.gaussian_sigma = cellprofiler_core.setting.text.Float(
text="Segmentation distance transform smoothing factor",
value=1.,
doc="Sigma defines how 'smooth' the Gaussian kernel makes the image. Higher sigma means a smoother image."
)
self.min_dist = cellprofiler_core.setting.text.Integer(
text="Minimum distance between seeds",
value=1,
minval=0,
doc="""\
Minimum number of pixels separating peaks in a region of `2 * min_distance + 1 `
(i.e. peaks are separated by at least min_distance).
To find the maximum number of peaks, set this value to `1`.
"""
)
self.min_intensity = cellprofiler_core.setting.text.Float(
text="Minimum absolute internal distance",
value=0.,
minval=0.,
doc="""\
Minimum absolute intensity threshold for seed generation. Since this threshold is
applied to the distance transformed image, this defines a minimum object
"size". Objects smaller than this size will not contain seeds.
By default, the absolute threshold is the minimum value of the image.
For distance transformed images, this value is `0` (or the background).
"""
)
self.exclude_border = cellprofiler_core.setting.text.Integer(
text="Pixels from border to exclude",
value=0,
minval=0,
doc="Exclude seed generation from within `n` pixels of the image border."
)
self.max_seeds = cellprofiler_core.setting.text.Integer(
text="Maximum number of seeds",
value=-1,
doc="""\
Maximum number of seeds to generate. Default is no limit.
When the number of seeds exceeds this number, seeds are chosen
based on largest internal distance.
"""
)
self.structuring_element = cellprofiler_core.setting.StructuringElement(
text="Structuring element for seed dilation",
doc="""\
Structuring element to use for dilating the seeds.
Volumetric images will require volumetric structuring elements.
"""
)
self.connectivity = cellprofiler_core.setting.text.Integer(
text="Watershed connectivity",
value=1,
minval=1,
maxval=3,
doc="Connectivity for the watershed algorithm. Default is 1, maximum is number of dimensions of the image"
)
def settings(self):
__settings__ = super(DeclumpObjects, self).settings()
return __settings__ + [
self.declump_method,
self.reference_name,
self.gaussian_sigma,
self.min_dist,
self.min_intensity,
self.exclude_border,
self.max_seeds,
self.structuring_element,
self.connectivity
]
def visible_settings(self):
__settings__ = super(DeclumpObjects, self).visible_settings()
__settings__ += [self.declump_method]
if self.declump_method.value == O_INTENSITY:
__settings__ += [self.reference_name]
__settings__ += [
self.gaussian_sigma,
self.min_dist,
self.min_intensity,
self.exclude_border,
self.max_seeds,
self.structuring_element,
self.connectivity
]
return __settings__
def run(self, workspace):
x_name = self.x_name.value
y_name = self.y_name.value
object_set = workspace.object_set
images = workspace.image_set
x = object_set.get_objects(x_name)
x_data = x.segmented
strel_dim = self.structuring_element.value.ndim
im_dim = x.segmented.ndim
# Make sure structuring element matches image dimension
if strel_dim != im_dim:
raise ValueError("Structuring element does not match object dimensions: "
"{} != {}".format(strel_dim, im_dim))
# Get the segmentation distance transform
peak_image = scipy.ndimage.distance_transform_edt(x_data > 0)
# Generate a watershed ready image
if self.declump_method.value == O_SHAPE:
# Use the reverse of the image to get basins at peaks
# dist_transform = skimage.util.invert(dist_transform)
watershed_image = -peak_image
watershed_image -= watershed_image.min()
else:
reference_name = self.reference_name.value
reference = images.get_image(reference_name)
reference_data = reference.pixel_data
# Set the image as a float and rescale to full bit depth
watershed_image = skimage.img_as_float(reference_data, force_copy=True)
watershed_image -= watershed_image.min()
watershed_image = 1 - watershed_image
# Smooth the image
watershed_image = skimage.filters.gaussian(watershed_image, sigma=self.gaussian_sigma.value)
# Generate local peaks
seeds = skimage.feature.peak_local_max(peak_image,
min_distance=self.min_dist.value,
threshold_rel=self.min_intensity.value,
exclude_border=self.exclude_border.value,
num_peaks=self.max_seeds.value if self.max_seeds.value != -1 else numpy.inf,
indices=False)
# Dilate seeds based on settings
seeds = skimage.morphology.binary_dilation(seeds, self.structuring_element.value)
seeds_dtype = (numpy.int16 if x.count < numpy.iinfo(numpy.int16).max else numpy.int32)
# NOTE: Not my work, the comments below are courtesy of Ray
#
# Create a marker array where the unlabeled image has a label of
# -(nobjects+1)
# and every local maximum has a unique label which will become
# the object's label. The labels are negative because that
# makes the watershed algorithm use FIFO for the pixels which
# yields fair boundaries when markers compete for pixels.
#
seeds = scipy.ndimage.label(seeds)[0]
markers = numpy.zeros_like(seeds, dtype=seeds_dtype)
markers[seeds > 0] = -seeds[seeds > 0]
# Perform the watershed
watershed_boundaries = skimage.morphology.watershed(
connectivity=self.connectivity.value,
image=watershed_image,
markers=markers,
mask=x_data != 0
)
y_data = watershed_boundaries.copy()
# Copy the location of the "background"
zeros = numpy.where(y_data == 0)
# Re-shift all of the labels into the positive realm
y_data += numpy.abs(numpy.min(y_data)) + 1
# Re-apply the background
y_data[zeros] = 0
objects = cellprofiler_core.object.Objects()
objects.segmented = y_data.astype(numpy.uint16)
objects.parent_image = x.parent_image
object_set.add_objects(objects, y_name)
self.add_measurements(workspace)
if self.show_window:
workspace.display_data.x_data = x.segmented
workspace.display_data.y_data = y_data
workspace.display_data.dimensions = x.dimensions