-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvispy_demo_old.py
213 lines (163 loc) · 7 KB
/
vispy_demo_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
from PIL import Image
from matplotlib import pyplot as plt
from mano_train.demo.attention import AttentionHook
from handobjectdatasets.queries import BaseQueries, TransQueries
import cv2
from mano_train.exputils import argutils
from detection.detection import detection_init, detection
from multiprocessing import Process
from crop import crop
from mano_train.demo.preprocess import prepare_input, preprocess_frame
import numpy as np
import ray
from mano_train.netscripts.reload import reload_ray_model
import os, pickle, torch
import time
from handobjectdatasets.viz2d import visualize_joints_2d_cv2
from copy import deepcopy
from mano_train.visualize import displaymano
from mano_train.modelutils import modelio
from vispy import plot as vp
from vispy import scene
from vispy import app, gloo, visuals, io, geometry
def forward_pass_3d(input_image, pred_obj=True, left=True):
sample = {}
sample[TransQueries.images] = input_image
sample[BaseQueries.sides] = ["left" if left else "right"]
sample[TransQueries.joints3d] = input_image.new_ones((1, 21, 3)).float()
sample["root"] = "wrist"
if pred_obj:
sample[TransQueries.objpoints3d] = input_image.new_ones(
(1, 600, 3)
).float()
#print(sample)
return sample
#@ray.remote(num_cpus=4, max_calls=1)
def plot(hand, output, fig):
hand_idx, hand_crop, left = hand
# Pose Estimation (L-only)
if left:
inpimage = deepcopy(hand_crop)
else:
inpimage = deepcopy(np.flip(hand_crop, axis=1))
if "joints2d" in output:
joints2d = output["joints2d"]
pose = visualize_joints_2d_cv2(
inpimage, joints2d.cpu().detach().numpy()[0]
)
if left:
pose = cv2.flip(inpimage, 1)
cv2.imshow(f"Hand #{hand_idx} Pose", pose)
# Mesh Reconstruction
verts = output["verts"].cpu().detach().numpy()[0]
# ax = fig.add_subplot(1, 1, 1, projection="3d")
fig.view = fig.central_widget.add_view()
displaymano.add_mesh(fig.view, verts, faces, flip_x=left)
if "objpoints3d" in output:
objverts = output["objpoints3d"].cpu().detach().numpy()[0]
displaymano.add_mesh(
fig.view, objverts, output["objfaces"], flip_x=left, c="r"
)
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
buf.shape = (w, h, 4)
cv2.imshow(f"Hand #{hand_idx} Mesh", buf)
if __name__ == "__main__":
ray.init()
print(ray.get_gpu_ids())
parser = argparse.ArgumentParser()
parser.add_argument(
"--resume",
type=str,
help="Path to checkpoint",
default="release_models/obman/checkpoint.pth.tar",
required=True
)
parser.add_argument("--video_path", help="Path to video")
parser.add_argument('--checksession', dest='checksession',
help='Checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='Checkepoch to load network',
default=10, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='Checkpoint to load network',
default=90193, type=int, required=True)
parser.add_argument('--workers', dest='workers',
help='Number of workers to initialize',
default=3, type=int,)
args = parser.parse_args()
argutils.print_args(args)
# Load model options
checkpoint = os.path.dirname(args.resume)
with open(os.path.join(checkpoint, "opt.pkl"), "rb") as opt_f:
opts = pickle.load(opt_f)
# Load faces of hand
with open("misc/mano/MANO_RIGHT.pkl", "rb") as p_f:
mano_right_data = pickle.load(p_f, encoding="latin1")
faces = mano_right_data["f"]
# Initialize network
fasterRCNN = detection_init(args.checksession, args.checkepoch, args.checkpoint)
# Initialize stream from camera
if args.video_path is None:
# Read from webcam
cap = cv2.VideoCapture(0)
else:
cap = cv2.VideoCapture(args.video_path)
if cap is None:
raise RuntimeError("OpenCV could not use webcam")
print(" ------------------- Load 3D Mesh Model Weights ------------------- \n")
weights = modelio.load_state_dict(args.resume)
weights_id = ray.put(weights)
print(" ------------------- Start Ray Multiprocessing Workers ------------------- \n")
HandNets = [reload_ray_model(args.resume, opts, weights_id) for i in range(args.workers)]
HandNets_id = ray.put(HandNets)
#attention_hands = [AttentionHook(ray.get(model.get_base_net.remote())) for model in HandNets]
figs = [scene.SceneCanvas(keys='interactive', always_on_top=True) for i in range(args.workers)]
# figs.view = figs.central_widget.add_view() #do for every fig
prev_toc = time.time()
while True:
for fig in figs:
fig.clf() #clear
ret, frame = cap.read()
total_tic = time.time()
source_total = total_tic - prev_toc
source_frame_rate = 1 / source_total
print(f"Source Frame Rate: {source_frame_rate}")
if not ret:
raise RuntimeError("OpenCV could not load frame")
hand_dets = detection(frame, fasterRCNN)
det_toc = time.time()
det_total = det_toc - total_tic
det_frame_rate = 1 / det_total
print(f"Detection Frame Rate: {det_frame_rate}")
if hand_dets is not None:
# Preprocess and crop hands
hand_dets = [(hand_idx + 1, hand_dets[i, :]) for hand_idx, i in enumerate(range(np.minimum(10, hand_dets.shape[0]))) ]
hands = [(hand_idx, crop(frame, det, 1.2), det[-1]) for hand_idx, det in hand_dets]
# [
# cv2.imshow(f"Hand #{hand_idx}", frame)
# for hand_idx, frame, side in hands
# ]
hands = [(hand_idx, cv2.resize(preprocess_frame(frame), (256, 256)), not bool(side)) for hand_idx, frame, side in hands]
hands_input = [(hand_idx, prepare_input(frame, flip_left_right=not side,), side) for hand_idx, frame, side in hands]
samples = [
forward_pass_3d(hand, left=side)
for hand_idx, hand, side in hands_input
]
results= ray.get([HandNets[i%args.workers].forward.remote(samples[i], no_loss=True) for i in range(len(samples))])
mesh_toc = time.time()
mesh_total = mesh_toc - total_tic
mesh_frame_rate = 1 / mesh_total
print(f"Mesh Frame Rate: {mesh_frame_rate}")
for i in range(len(results)): plot(hands[i], results[i][1], figs[i])
total_toc = time.time()
total_time = total_toc - total_tic
frame_rate = 1 / total_time
print(f"Plot Frame Rate: {frame_rate}\n")
prev_toc = time.time()
cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()