forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 4
/
detect.py
252 lines (208 loc) · 11.5 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import os
# ADDING THESE
import torch
import torch.nn as nn
import logging
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms
from torchvision import models
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_second_stage_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
# Please add mean and standard deviation of 2nd stage classifier's dataset
mean = [0.6260697307067842, 0.6012213494919662, 0.5740048955840032]
std = [0.2769153533724628, 0.2770797896447206, 0.28843602809799673]
class_names2 = None
super_class = None # The class whose output is not supposed to go to image classifier
def create_model(n_classes,device):
model = torch.hub.load('pytorch/vision:v0.6.0','resnext50_32x4d',pretrained=True)
n_features = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(n_features, n_classes),
nn.Softmax(dim=1)
)
return model.to(device)
def detect(save_img=False):
frame_number = 0
source, weights, view_img, save_txt, imgsz, second_classifier = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.second_classifier
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
class_names1 = model.module.names if hasattr(model, 'module') else model.names
print(class_names1)
# Second-stage classifier
if second_classifier:
# TODO: Provide the list of class names for 2nd model
class_names2 = []
print(class_names2)
# If YOLO is trained for more than one class, then we mention which class is sub_class
if len(class_names1)>1:
super_class = 1 # Index of class that does not have sub-classes, currently for 2 classes
# it can be made a list for multiple superclasses
sub_class = 0 # Index of class that has sub-classes that image classifier will classify
# If YOLO is trained for just one class of objects, which is to be further classified by image classifier
else:
sub_class=0
super_class = None
modelc = create_model(len(class_names2),device)
# TODO: Provide the path to load the pre-trained image classifier model .pt file below
checkpoint = torch.load('')
modelc.load_state_dict(checkpoint['model_state_dict'])
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz, stride=stride)
if second_classifier:
colors = [[random.randint(0, 255) for _ in range(3)] for _ in class_names2]
else:
colors = [[random.randint(0, 255) for _ in range(3)] for _ in class_names1]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
frame_number+=1
original_image = img
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply 2nd stage classifier
if second_classifier:
if pred[0].nelement()>0:
pred = apply_second_stage_classifier(pred, modelc, original_image, device, mean, std)
all_label = ""
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
# s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for elements in reversed(det):
xyxy,conf,*cls = elements[:4],elements[4],elements[5:]
if save_txt:
with open(txt_path + '.txt', 'a') as f:
f.write(f"Frame number {frame_number} \n XYXY {xyxy}, conf {conf}, cls {cls}")
if save_img or view_img: # Add bbox to image
# If there was no sub_class detection
if len(cls[0])==1:
label = f'{class_names1[int(cls[0].item())]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls[0].item())], line_thickness=3)
all_label+=label+","
# else, we find super class and sub class
else:
all_classes = cls[0].tolist()
# In general.py, we appended a column to every detection 'det' tensor
# If super class exists in the tensor, then we just show its class name
if super_class and super_class in all_classes:
# name_ind = int(sub_classes[sub_class])
label = f'{class_names1[super_class]} {conf:.2f}'
# If subclass existed in detection 'det' tensor and superclass didnt
# then we show name of subclass
else:
name_ind = int(all_classes[-1]) # Last element is the sub_class from image classifier
label = f'{class_names2[name_ind]} {conf:.2f}'
all_label+=label+","
plot_one_box(xyxy, im0, label=label, color=colors[name_ind], line_thickness=3)
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--second-classifier', action='store_true', help='Apply 2nd stage classifier on detected items')
opt = parser.parse_args()
print(opt)
check_requirements()
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()