-
Notifications
You must be signed in to change notification settings - Fork 0
/
stemmer.c
385 lines (274 loc) · 10.7 KB
/
stemmer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/* This is the Porter stemming algorithm, coded up in ANSI C by the
author. It may be be regarded as canonical, in that it follows the
algorithm presented in
Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
no. 3, pp 130-137,
only differing from it at the points marked --DEPARTURE-- below.
See also http://www.tartarus.org/~martin/PorterStemmer
The algorithm as described in the paper could be exactly replicated
by adjusting the points of DEPARTURE, but this is barely necessary,
because (a) the points of DEPARTURE are definitely improvements, and
(b) no encoding of the Porter stemmer I have seen is anything like
as exact as this version, even with the points of DEPARTURE!
You can compile it on Unix with 'gcc -O3 -o stem stem.c' after which
'stem' takes a list of inputs and sends the stemmed equivalent to
stdout.
The algorithm as encoded here is particularly fast.
Release 1: was many years ago
Release 2: 11 Apr 2013
fixes a bug noted by Matt Patenaude <[email protected]>,
case 'o': if (ends("\03" "ion") && (b[j] == 's' || b[j] == 't')) break;
==>
case 'o': if (ends("\03" "ion") && j >= k0 && (b[j] == 's' || b[j] == 't')) break;
to avoid accessing b[k0-1] when the word in b is "ion".
Release 3: 25 Mar 2014
fixes a similar bug noted by Klemens Baum <[email protected]>,
that if step1ab leaves a one letter result (ied -> i, aing -> a etc),
step2 and step4 access the byte before the first letter. So we skip
steps after step1ab unless k > k0.
*/
#include <string.h> /* for memmove */
#define TRUE 1
#define FALSE 0
/* The main part of the stemming algorithm starts here. b is a buffer
holding a word to be stemmed. The letters are in b[k0], b[k0+1] ...
ending at b[k]. In fact k0 = 0 in this demo program. k is readjusted
downwards as the stemming progresses. Zero termination is not in fact
used in the algorithm.
Note that only lower case sequences are stemmed. Forcing to lower case
should be done before stem(...) is called.
*/
static char * b; /* buffer for word to be stemmed */
static int k,k0,j; /* j is a general offset into the string */
/* cons(i) is TRUE <=> b[i] is a consonant. */
static int cons(int i)
{ switch (b[i])
{ case 'a': case 'e': case 'i': case 'o': case 'u': return FALSE;
case 'y': return (i==k0) ? TRUE : !cons(i-1);
default: return TRUE;
}
}
/* m() measures the number of consonant sequences between k0 and j. if c is
a consonant sequence and v a vowel sequence, and <..> indicates arbitrary
presence,
<c><v> gives 0
<c>vc<v> gives 1
<c>vcvc<v> gives 2
<c>vcvcvc<v> gives 3
....
*/
static int m()
{ int n = 0;
int i = k0;
while(TRUE)
{ if (i > j) return n;
if (! cons(i)) break; i++;
}
i++;
while(TRUE)
{ while(TRUE)
{ if (i > j) return n;
if (cons(i)) break;
i++;
}
i++;
n++;
while(TRUE)
{ if (i > j) return n;
if (! cons(i)) break;
i++;
}
i++;
}
}
/* vowelinstem() is TRUE <=> k0,...j contains a vowel */
static int vowelinstem()
{ int i; for (i = k0; i <= j; i++) if (! cons(i)) return TRUE;
return FALSE;
}
/* doublec(j) is TRUE <=> j,(j-1) contain a double consonant. */
static int doublec(int j)
{ if (j < k0+1) return FALSE;
if (b[j] != b[j-1]) return FALSE;
return cons(j);
}
/* cvc(i) is TRUE <=> i-2,i-1,i has the form consonant - vowel - consonant
and also if the second c is not w,x or y. this is used when trying to
restore an e at the end of a short word. e.g.
cav(e), lov(e), hop(e), crim(e), but
snow, box, tray.
*/
static int cvc(int i)
{ if (i < k0+2 || !cons(i) || cons(i-1) || !cons(i-2)) return FALSE;
{ int ch = b[i];
if (ch == 'w' || ch == 'x' || ch == 'y') return FALSE;
}
return TRUE;
}
/* ends(s) is TRUE <=> k0,...k ends with the string s. */
static int ends(char * s)
{ int length = s[0];
if (s[length] != b[k]) return FALSE; /* tiny speed-up */
if (length > k-k0+1) return FALSE;
if (memcmp(b+k-length+1,s+1,length) != 0) return FALSE;
j = k-length;
return TRUE;
}
/* setto(s) sets (j+1),...k to the characters in the string s, readjusting
k. */
static void setto(char * s)
{ int length = s[0];
memmove(b+j+1,s+1,length);
k = j+length;
}
/* r(s) is used further down. */
static void r(char * s) { if (m() > 0) setto(s); }
/* step1ab() gets rid of plurals and -ed or -ing. e.g.
caresses -> caress
ponies -> poni
ties -> ti
caress -> caress
cats -> cat
feed -> feed
agreed -> agree
disabled -> disable
matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess
meetings -> meet
*/
static void step1ab()
{ if (b[k] == 's')
{ if (ends("\04" "sses")) k -= 2; else
if (ends("\03" "ies")) setto("\01" "i"); else
if (b[k-1] != 's') k--;
}
if (ends("\03" "eed")) { if (m() > 0) k--; } else
if ((ends("\02" "ed") || ends("\03" "ing")) && vowelinstem())
{ k = j;
if (ends("\02" "at")) setto("\03" "ate"); else
if (ends("\02" "bl")) setto("\03" "ble"); else
if (ends("\02" "iz")) setto("\03" "ize"); else
if (doublec(k))
{ k--;
{ int ch = b[k];
if (ch == 'l' || ch == 's' || ch == 'z') k++;
}
}
else if (m() == 1 && cvc(k)) setto("\01" "e");
}
}
/* step1c() turns terminal y to i when there is another vowel in the stem. */
static void step1c() { if (ends("\01" "y") && vowelinstem()) b[k] = 'i'; }
/* step2() maps double suffices to single ones. so -ization ( = -ize plus
-ation) maps to -ize etc. note that the string before the suffix must give
m() > 0. */
static void step2() { switch (b[k-1])
{
case 'a': if (ends("\07" "ational")) { r("\03" "ate"); break; }
if (ends("\06" "tional")) { r("\04" "tion"); break; }
break;
case 'c': if (ends("\04" "enci")) { r("\04" "ence"); break; }
if (ends("\04" "anci")) { r("\04" "ance"); break; }
break;
case 'e': if (ends("\04" "izer")) { r("\03" "ize"); break; }
break;
case 'l': if (ends("\03" "bli")) { r("\03" "ble"); break; } /*-DEPARTURE-*/
/* To match the published algorithm, replace this line with
case 'l': if (ends("\04" "abli")) { r("\04" "able"); break; } */
if (ends("\04" "alli")) { r("\02" "al"); break; }
if (ends("\05" "entli")) { r("\03" "ent"); break; }
if (ends("\03" "eli")) { r("\01" "e"); break; }
if (ends("\05" "ousli")) { r("\03" "ous"); break; }
break;
case 'o': if (ends("\07" "ization")) { r("\03" "ize"); break; }
if (ends("\05" "ation")) { r("\03" "ate"); break; }
if (ends("\04" "ator")) { r("\03" "ate"); break; }
break;
case 's': if (ends("\05" "alism")) { r("\02" "al"); break; }
if (ends("\07" "iveness")) { r("\03" "ive"); break; }
if (ends("\07" "fulness")) { r("\03" "ful"); break; }
if (ends("\07" "ousness")) { r("\03" "ous"); break; }
break;
case 't': if (ends("\05" "aliti")) { r("\02" "al"); break; }
if (ends("\05" "iviti")) { r("\03" "ive"); break; }
if (ends("\06" "biliti")) { r("\03" "ble"); break; }
break;
case 'g': if (ends("\04" "logi")) { r("\03" "log"); break; } /*-DEPARTURE-*/
/* To match the published algorithm, delete this line */
} }
/* step3() deals with -ic-, -full, -ness etc. similar strategy to step2. */
static void step3() { switch (b[k])
{
case 'e': if (ends("\05" "icate")) { r("\02" "ic"); break; }
if (ends("\05" "ative")) { r("\00" ""); break; }
if (ends("\05" "alize")) { r("\02" "al"); break; }
break;
case 'i': if (ends("\05" "iciti")) { r("\02" "ic"); break; }
break;
case 'l': if (ends("\04" "ical")) { r("\02" "ic"); break; }
if (ends("\03" "ful")) { r("\00" ""); break; }
break;
case 's': if (ends("\04" "ness")) { r("\00" ""); break; }
break;
} }
/* step4() takes off -ant, -ence etc., in context <c>vcvc<v>. */
static void step4()
{ switch (b[k-1])
{ case 'a': if (ends("\02" "al")) break; return;
case 'c': if (ends("\04" "ance")) break;
if (ends("\04" "ence")) break; return;
case 'e': if (ends("\02" "er")) break; return;
case 'i': if (ends("\02" "ic")) break; return;
case 'l': if (ends("\04" "able")) break;
if (ends("\04" "ible")) break; return;
case 'n': if (ends("\03" "ant")) break;
if (ends("\05" "ement")) break;
if (ends("\04" "ment")) break;
if (ends("\03" "ent")) break; return;
case 'o': if (ends("\03" "ion") && j >= k0 && (b[j] == 's' || b[j] == 't')) break;
if (ends("\02" "ou")) break; return;
/* takes care of -ous */
case 's': if (ends("\03" "ism")) break; return;
case 't': if (ends("\03" "ate")) break;
if (ends("\03" "iti")) break; return;
case 'u': if (ends("\03" "ous")) break; return;
case 'v': if (ends("\03" "ive")) break; return;
case 'z': if (ends("\03" "ize")) break; return;
default: return;
}
if (m() > 1) k = j;
}
/* step5() removes a final -e if m() > 1, and changes -ll to -l if
m() > 1. */
static void step5()
{ j = k;
if (b[k] == 'e')
{ int a = m();
if (a > 1 || a == 1 && !cvc(k-1)) k--;
}
if (b[k] == 'l' && doublec(k) && m() > 1) k--;
}
/* In stem(p,i,j), p is a char pointer, and the string to be stemmed is from
p[i] to p[j] inclusive. Typically i is zero and j is the offset to the last
character of a string, (p[j+1] == '\0'). The stemmer adjusts the
characters p[i] ... p[j] and returns the new end-point of the string, k.
Stemming never increases word length, so i <= k <= j. To turn the stemmer
into a module, declare 'stem' as extern, and delete the remainder of this
file.
*/
int stem(char * p, int i, int j)
{ b = p; k = j; k0 = i; /* copy the parameters into statics */
if (k <= k0+1) return k; /*-DEPARTURE-*/
/* With this line, strings of length 1 or 2 don't go through the
stemming process, although no mention is made of this in the
published algorithm. Remove the line to match the published
algorithm. */
step1ab();
if (k > k0) {
step1c(); step2(); step3(); step4(); step5();
}
return k;
}