diff --git a/docs/_static/voxel.png b/docs/_static/voxel.png new file mode 100644 index 00000000..5d98fd35 Binary files /dev/null and b/docs/_static/voxel.png differ diff --git a/docs/examples/plot_01_neurons_intro.py b/docs/examples/plot_01_neurons_intro.py index 466f6174..417b8ba6 100644 --- a/docs/examples/plot_01_neurons_intro.py +++ b/docs/examples/plot_01_neurons_intro.py @@ -115,10 +115,12 @@ # [`VoxelNeurons`][navis.VoxelNeuron] represent neurons as either 3d image or x/y/z voxel coordinates # typically obtained from e.g. light-level microscopy. # -# [`navis.VoxelNeuron`][] consist of either a 3d `(N, M, K)` array (a "grid") or an 2d `(N, 3)` -# array of voxel coordinates. You will probably find yourself loading these data from image files -# (e.g. `.nrrd` via [`navis.read_nrrd()`][navis.read_nrrd]). That said we can also "voxelize" -# other neuron types to produce [`VoxelNeurons`][navis.VoxelNeuron]: +# ![voxels](../../../_static/voxel.png) +# +# [`navis.VoxelNeuron`][] consist of either a dense3d `(N, M, K)` array (a "grid") or a sparse 2d `(N, 3)` +# array of voxel coordinates (COO format). You will probably find yourself loading these +# data from image files (e.g. `.nrrd` via [`navis.read_nrrd()`][navis.read_nrrd]). That said we can +# also "voxelize" other neuron types to produce [`VoxelNeurons`][navis.VoxelNeuron]: # Load an example mesh m = navis.example_neurons(n=1, kind="mesh")