-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfall.py
148 lines (136 loc) · 5.81 KB
/
fall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import logging
import time
from pprint import pprint
import cv2
import numpy as np
import sys
from tf_pose.estimator import TfPoseEstimator
from tf_pose.networks import get_graph_path, model_wh
import math
logger = logging.getLogger('TfPoseEstimator-WebCam')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
fps_time = 0
def find_point(pose, p):
for point in pose:
try:
body_part = point.body_parts[p]
return (int(body_part.x * width + 0.5), int(body_part.y * height + 0.5))
except:
return (0,0)
return (0,0)
def euclidian( point1, point2):
return math.sqrt((point1[0]-point2[0])**2 + (point1[1]-point2[1])**2 )
def angle_calc(p0, p1, p2 ):
'''
p1 is center point from where we measured angle between p0 and p2
'''
try:
a = (p1[0]-p0[0])**2 + (p1[1]-p0[1])**2
b = (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2
c = (p2[0]-p0[0])**2 + (p2[1]-p0[1])**2
angle = math.acos( (a+b-c) / math.sqrt(4*a*b) ) * 180/math.pi
except:
return 0
return int(angle)
def plank( a, b, c, d, e, f):
#There are ranges of angle and distance to for plank.
'''
a and b are angles of hands
c and d are angle of legs
e and f are distance between head to ankle because in plank distace will be maximum.
'''
if (a in range(50,100) or b in range(50,100)) and (c in range(135,175) or d in range(135,175)) and (e in range(50,250) or f in range(50,250)):
return True
return False
def mountain_pose( a, b, c, d, e):
'''
a is distance between two wrists
b and c are angle between neck,shoulder and wrist
d and e are distance between head to ankle
'''
if a in range(20,160) and b in range(60,140) and c in range(60,140) and d in range(100,145) and e in range(100,145):
return True
return False
def draw_str(dst, xxx_todo_changeme, s, color, scale):
(x, y) = xxx_todo_changeme
if (color[0]+color[1]+color[2]==255*3):
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, scale, (0, 0, 0), thickness = 4, lineType=10)
else:
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, scale, color, thickness = 4, lineType=10)
#cv2.line
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, scale, (255, 255, 255), lineType=11)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='tf-pose-estimation realtime webcam')
parser.add_argument('--camera', type=str, default=0)
parser.add_argument('--resize', type=str, default='432x368',
help='if provided, resize images before they are processed. default=432x368, Recommends : 432x368 or 656x368 or 1312x736 ')
parser.add_argument('--resize-out-ratio', type=float, default=4.0,
help='if provided, resize heatmaps before they are post-processed. default=1.0')
parser.add_argument('--model', type=str, default='cmu', help='cmu / mobilenet_thin')
parser.add_argument('--show-process', type=bool, default=False,
help='for debug purpose, if enabled, speed for inference is dropped.')
args = parser.parse_args()
mode = 2
logger.debug('initialization %s : %s' % (args.model, get_graph_path(args.model)))
w, h = model_wh(args.resize)
if w > 0 and h > 0:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
else:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(432, 368))
logger.debug('cam read+')
cam = cv2.VideoCapture(args.camera)
ret_val, image = cam.read()
logger.info('cam image=%dx%d' % (image.shape[1], image.shape[0]))
count = 0
i = 0
frm = 0
y1 = [0,0]
global height,width
orange_color = (0,140,255)
while True:
ret_val, image = cam.read()
i =1
humans = e.inference(image, resize_to_default=(w > 0 and h > 0), upsample_size=args.resize_out_ratio)
pose = humans
image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False)
height,width = image.shape[0],image.shape[1]
if mode == 1:
hu = len(humans)
# print("Total no. of People : ", hu)
elif mode == 2:
for human in humans:
for i in range(len(humans)):
y=0
try:
a = human.body_parts[0] #Head point
x = a.x*image.shape[1]
y = a.y*image.shape[0]
y1.append(y)
except:
pass
if ((y - y1[-2]) > 30):
action="Fall Detected"
draw_str(image, (20, 50), action, orange_color, 2)
print("fall detected.",i+1, count)#You can set count for get that your detection is working
cv2.putText(image,
"FPS: %f" % (1.0 / (time.time() - fps_time)),
(10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
#image = cv2.resize(image, (720,720))
if(frm==0):
out = cv2.VideoWriter('outpy.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 30, (image.shape[1],image.shape[0]))
print("Initializing")
frm+=1
cv2.imshow('tf-pose-estimation result', image)
if i != 0:
out.write(image)
fps_time = time.time()
if cv2.waitKey(1) == 27:
break
cv2.destroyAllWindows()