-
Notifications
You must be signed in to change notification settings - Fork 0
/
recommender.py
80 lines (57 loc) · 2.35 KB
/
recommender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pickle
import sklearn.preprocessing as pp
from scipy.sparse import csr_matrix
import numpy as np
import pandas as pd
def inference_row(list_tid, ps_matrix):
ps_matrix_norm = pp.normalize(ps_matrix, axis=1)
length_tid = len(list_tid)
n_songs = ps_matrix.shape[1]
sparse_row = csr_matrix((np.ones(length_tid), (np.zeros(length_tid), list_tid)), shape=(1, n_songs))
sparse_row_norm = pp.normalize(sparse_row, axis=1)
return sparse_row_norm * ps_matrix_norm.T, sparse_row
def get_best_tid(current_list, ps_matrix_row, K=100, MAX_tid=10):
df_ps_train = pd.read_hdf('data/df_data/df_playlistSong/df_ps_train_new.hdf')
sim_vector, sparse_row = inference_row(current_list, ps_matrix_row)
sim_vector = sim_vector.toarray()[0].tolist()
# Enumerate index and rating
counter_list = list(enumerate(sim_vector, 0))
# Sort by rating
sortedList = sorted(counter_list, key=lambda x: x[1], reverse=True)
topK_pid = [i for i, _ in sortedList[1:K + 1]]
n = 0
while (1):
top_pid = topK_pid[n]
add_tid_list = df_ps_train.loc[top_pid].tid
# Form new list
new_tid_list = current_list + add_tid_list
# Check number of songs and Add to data for prediction
total_song = len(new_tid_list)
# print("n: {}\t total_song: {}".format(n,total_song))
if (total_song > MAX_tid):
new_tid_list = new_tid_list[:MAX_tid]
# Add
current_list = new_tid_list
break
else:
current_list = new_tid_list
n += 1
if (n == K):
break
return current_list
def inference_from_tid(list_tid, K=100, MAX_tid=10):
pickle_path = 'data/giantMatrix_new.pickle'
# pickle_path = 'data/giantMatrix_truth_new.pickle'
with open(pickle_path, 'rb') as f:
ps_matrix = pickle.load(f)
ps_matrix_row = ps_matrix.tocsr()
return get_best_tid(list_tid, ps_matrix.tocsr())
def inference_from_uri(list_uri, K=100, MAX_tid=10):
with open('dict_uri2tid.pkl', 'rb') as f:
dict_uri2tid = pickle.load(f)
list_tid = [dict_uri2tid[x] for x in list_uri if x in dict_uri2tid]
best_tid = inference_from_tid(list_tid, K, MAX_tid)
with open('dict_tid2uri.pkl', 'rb') as f:
dict_tid2uri = pickle.load(f)
best_uri = [dict_tid2uri[x] for x in best_tid]
return best_uri