forked from kodecocodes/swift-algorithm-club
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCombinatorics.swift
106 lines (95 loc) · 2.33 KB
/
Combinatorics.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/* Calculates n! */
func factorial(n: Int) -> Int {
var n = n
var result = 1
while n > 1 {
result *= n
n -= 1
}
return result
}
/*
Calculates P(n, k), the number of permutations of n distinct symbols
in groups of size k.
*/
func permutations(n: Int, _ k: Int) -> Int {
var n = n
var answer = n
for _ in 1..<k {
n -= 1
answer *= n
}
return answer
}
/*
Prints out all the permutations of the given array.
Original algorithm by Niklaus Wirth.
See also Dr.Dobb's Magazine June 1993, Algorithm Alley
*/
func permuteWirth<T>(a: [T], _ n: Int) {
if n == 0 {
print(a) // display the current permutation
} else {
var a = a
permuteWirth(a, n - 1)
for i in 0..<n {
swap(&a[i], &a[n])
permuteWirth(a, n - 1)
swap(&a[i], &a[n])
}
}
}
/*
Prints out all the permutations of an n-element collection.
The initial array must be initialized with all zeros. The algorithm
uses 0 as a flag that indicates more work to be done on each level
of the recursion.
Original algorithm by Robert Sedgewick.
See also Dr.Dobb's Magazine June 1993, Algorithm Alley
*/
func permuteSedgewick(a: [Int], _ n: Int, inout _ pos: Int) {
var a = a
pos += 1
a[n] = pos
if pos == a.count - 1 {
print(a) // display the current permutation
} else {
for i in 0..<a.count {
if a[i] == 0 {
permuteSedgewick(a, i, &pos)
}
}
}
pos -= 1
a[n] = 0
}
/*
Calculates C(n, k), or "n-choose-k", i.e. how many different selections
of size k out of a total number of distinct elements (n) you can make.
Doesn't work very well for large numbers.
*/
func combinations(n: Int, _ k: Int) -> Int {
return permutations(n, k) / factorial(k)
}
/*
Calculates C(n, k), or "n-choose-k", i.e. the number of ways to choose
k things out of n possibilities.
Thanks to the dynamic programming, this algorithm from Skiena allows for
the calculation of much larger numbers, at the cost of temporary storage
space for the cached values.
*/
func binomialCoefficient(n: Int, _ k: Int) -> Int {
var bc = Array2D(columns: n + 1, rows: n + 1, initialValue: 0)
for i in 0...n {
bc[i, 0] = 1
bc[i, i] = 1
}
if n > 0 {
for i in 1...n {
for j in 1..<i {
bc[i, j] = bc[i - 1, j - 1] + bc[i - 1, j]
}
}
}
return bc[n, k]
}