forked from myorgenrote/SMKN4BDG_PENSICOV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfr_class.py
155 lines (119 loc) · 5.31 KB
/
fr_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import face_recognition
import cv2
import numpy as np
import os
result = ""
def set_result():
global result
result = "error"
return result
def get_result():
global result
return result
def identifikasi_wajah():
# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it
puji_image = face_recognition.load_image_file("images/puji.png")
puji_face_encoding = face_recognition.face_encodings(puji_image)[0]
andree_image = face_recognition.load_image_file("images/andree.png")
andree_face_encoding = face_recognition.face_encodings(andree_image)[0]
dwi_image = face_recognition.load_image_file("images/dwiputra.png")
dwi_face_encoding = face_recognition.face_encodings(dwi_image)[0]
shafa_image = face_recognition.load_image_file("images/shafa.png")
shafa_face_encoding = face_recognition.face_encodings(shafa_image)[0]
aldo_image = face_recognition.load_image_file("images/aldo.png")
aldo_face_encoding = face_recognition.face_encodings(aldo_image)[0]
firdaus_image = face_recognition.load_image_file("images/firdaus.png")
firdaus_face_encoding = face_recognition.face_encodings(firdaus_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
puji_face_encoding,
andree_face_encoding,
dwi_face_encoding,
shafa_face_encoding,
aldo_face_encoding,
firdaus_face_encoding
]
known_face_names = [
"Puji",
"Andree",
"Dwi",
"Shafa",
"Aldo",
"Firdaus"
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
temp_name = ""
count = 0
name = ""
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
if (temp_name != name):
temp_name = name
count = 0
else:
count = count + 1
face_names.append(name)
# os.system('cls')
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (127,255,0), 2)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 8, bottom - 6), font, 1.0, (255, 255, 255), 1)
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
if (count == 5):
print("absen for " + name + ", has held " + str(count) + "x frame")
break
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # concat frame one by one and show result
# Display the resulting image
# cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
# Release handle to the webcam
global result
result = name
video_capture.release()
cv2.destroyAllWindows()