-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathOneCycle.py
142 lines (129 loc) · 6.09 KB
/
OneCycle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import math
class OneCycle(object):
"""
In paper (https://arxiv.org/pdf/1803.09820.pdf), author suggests to do one cycle during
whole run with 2 steps of equal length. During first step, increase the learning rate
from lower learning rate to higher learning rate. And in second step, decrease it from
higher to lower learning rate. This is Cyclic learning rate policy. Author suggests one
addition to this. - During last few hundred/thousand iterations of cycle reduce the
learning rate to 1/100th or 1/1000th of the lower learning rate.
Also, Author suggests that reducing momentum when learning rate is increasing. So, we make
one cycle of momentum also with learning rate - Decrease momentum when learning rate is
increasing and increase momentum when learning rate is decreasing.
Args:
nb Total number of iterations including all epochs
max_lr The optimum learning rate. This learning rate will be used as highest
learning rate. The learning rate will fluctuate between max_lr to
max_lr/div and then (max_lr/div)/div.
momentum_vals The maximum and minimum momentum values between which momentum will
fluctuate during cycle.
Default values are (0.95, 0.85)
prcnt The percentage of cycle length for which we annihilate learning rate
way below the lower learnig rate.
The default value is 10
div The division factor used to get lower boundary of learning rate. This
will be used with max_lr value to decide lower learning rate boundary.
This value is also used to decide how much we annihilate the learning
rate below lower learning rate.
The default value is 10.
use_cosine Use cosine annealation instead of linear to change learning rate and
momentum.
The default value is False
"""
def __init__(self, nb, max_lr, momentum_vals=(0.95, 0.85), prcnt= 10, div=10, use_cosine=False):
self.nb = nb
self.div = div
self.high_lr = max_lr
self.low_mom = momentum_vals[1]
self.high_mom = momentum_vals[0]
self.use_cosine = use_cosine
if self.use_cosine:
self.prcnt = 0
else:
self.prcnt = prcnt
self.iteration = 0
self.lrs = []
self.moms = []
if self.use_cosine:
self.step_len = int(self.nb / 4)
else:
self.step_len = int(self.nb * (1- prcnt/100)/2)
def calc(self):
if self.use_cosine:
lr = self.calc_lr_cosine()
mom = self.calc_mom_cosine()
else:
lr = self.calc_lr()
mom = self.calc_mom()
self.iteration += 1
return (lr, mom)
def calc_lr(self):
if self.iteration == 0:
self.lrs.append(self.high_lr/self.div)
return self.high_lr/self.div
elif self.iteration == self.nb:
self.iteration = 0
self.lrs.append(self.high_lr/self.div)
return self.high_lr/self.div
elif self.iteration > 2 * self.step_len:
ratio = (self.iteration - 2 * self.step_len) / (self.nb - 2 * self.step_len)
#lr = self.high_lr * ( 1 - 0.99 * ratio)/self.div
lr = (self.high_lr / self.div) * (1- ratio * (1 - 1/self.div))
elif self.iteration > self.step_len:
ratio = 1- (self.iteration -self.step_len)/self.step_len
lr = self.high_lr * (1 + ratio * (self.div - 1)) / self.div
else :
ratio = self.iteration/self.step_len
lr = self.high_lr * (1 + ratio * (self.div - 1)) / self.div
self.lrs.append(lr)
return lr
def calc_mom(self):
if self.iteration == 0:
self.moms.append(self.high_mom)
return self.high_mom
elif self.iteration == self.nb:
self.iteration = 0
self.moms.append(self.high_mom)
return self.high_mom
elif self.iteration > 2 * self.step_len:
mom = self.high_mom
elif self.iteration > self.step_len:
ratio = (self.iteration -self.step_len)/self.step_len
mom = self.low_mom + ratio * (self.high_mom - self.low_mom)
else :
ratio = self.iteration/self.step_len
mom = self.high_mom - ratio * (self.high_mom - self.low_mom)
self.moms.append(mom)
return mom
def calc_lr_cosine(self):
if self.iteration == 0:
self.lrs.append(self.high_lr/self.div)
return self.high_lr/self.div
elif self.iteration == self.nb:
self.iteration = 0
self.lrs.append(self.high_lr/self.div)
return self.high_lr/self.div
elif self.iteration > self.step_len:
ratio = (self.iteration -self.step_len)/(self.nb - self.step_len)
lr = (self.high_lr/self.div) + 0.5 * (self.high_lr - self.high_lr/self.div) * (1 + math.cos(math.pi * ratio))
else :
ratio = self.iteration/self.step_len
lr = self.high_lr - 0.5 * (self.high_lr - self.high_lr/self.div) * (1 + math.cos(math.pi * ratio))
self.lrs.append(lr)
return lr
def calc_mom_cosine(self):
if self.iteration == 0:
self.moms.append(self.high_mom)
return self.high_mom
elif self.iteration == self.nb:
self.iteration = 0
self.moms.append(self.high_mom)
return self.high_mom
elif self.iteration > self.step_len:
ratio = (self.iteration -self.step_len)/(self.nb - self.step_len)
mom = self.high_mom - 0.5 * (self.high_mom - self.low_mom) * (1 + math.cos(math.pi * ratio))
else :
ratio = self.iteration/self.step_len
mom = self.low_mom + 0.5 * (self.high_mom - self.low_mom) * (1 + math.cos(math.pi * ratio))
self.moms.append(mom)
return mom