forked from wrc042/TorchSDF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
181 lines (157 loc) · 6.67 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# some useful environment variables:
#
# TORCH_CUDA_ARCH_LIST
# specify which CUDA architectures to build for
#
# IGNORE_TORCH_VER
# ignore version requirements for PyTorch
import os
from setuptools import setup, find_packages, dist
import importlib
from pkg_resources import parse_version
import subprocess
import warnings
TORCH_MIN_VER = '1.5.0'
TORCH_MAX_VER = '1.12.1'
IGNORE_TORCH_VER = True
# Module required before installation
# trying to install it ahead turned out to be too unstable.
torch_spec = importlib.util.find_spec("torch")
if torch_spec is None:
raise ImportError(
f"Kaolin requires PyTorch >={TORCH_MIN_VER}, <={TORCH_MAX_VER}, "
"but couldn't find the module installed."
)
else:
import torch
torch_ver = parse_version(torch.__version__)
if (torch_ver < parse_version(TORCH_MIN_VER) or
torch_ver > parse_version(TORCH_MAX_VER)):
if IGNORE_TORCH_VER:
warnings.warn(
f'Kaolin is compatible with PyTorch >={TORCH_MIN_VER}, <={TORCH_MAX_VER}, '
f'but found version {torch.__version__}. Continuing with the installed '
'version as IGNORE_TORCH_VER is set.'
)
else:
raise ImportError(
f'Kaolin requires PyTorch >={TORCH_MIN_VER}, <={TORCH_MAX_VER}, '
f'but found version {torch.__version__} instead.'
'If you wish to install with this specific version set IGNORE_TORCH_VER=1.'
)
import os
import sys
import logging
import glob
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
cwd = os.path.dirname(os.path.abspath(__file__))
logger = logging.getLogger()
logging.basicConfig(format='%(levelname)s - %(message)s')
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
if not torch.cuda.is_available():
if os.getenv('FORCE_CUDA', '0') == '1':
# From: https://github.com/NVIDIA/apex/blob/c4e85f7bf144cb0e368da96d339a6cbd9882cea5/setup.py
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
logging.warning(
"Torch did not find available GPUs on this system.\n"
"If your intention is to cross-compile, this is not an error.\n"
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n'
)
if os.getenv("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) == 11:
if int(bare_metal_minor) == 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
else:
logging.warning(
"Torch did not find available GPUs on this system.\n"
"Kaolin will install only with CPU support and will have very limited features.\n"
'If your wish to cross-compile for GPU `export FORCE_CUDA=1` before running setup.py\n'
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n'
)
PACKAGE_NAME = 'torchsdf'
LICENSE = 'Apache License 2.0'
version_txt = os.path.join(cwd, 'version.txt')
with open(version_txt) as f:
version = f.readline().strip()
def write_version_file():
version_path = os.path.join(cwd, 'torchsdf', 'version.py')
with open(version_path, 'w') as f:
f.write("__version__ = '{}'\n".format(version))
write_version_file()
def get_extensions():
extra_compile_args = {'cxx': ['-O3']}
define_macros = []
include_dirs = []
sources = glob.glob('torchsdf/csrc/**/*.cpp', recursive=True)
# FORCE_CUDA is for cross-compilation in docker build
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
with_cuda = True
define_macros += [("WITH_CUDA", None), ("THRUST_IGNORE_CUB_VERSION_CHECK", None)]
sources += glob.glob('torchsdf/csrc/**/*.cu', recursive=True)
extension = CUDAExtension
extra_compile_args.update({'nvcc': [
'-O3',
'-DWITH_CUDA',
'-DTHRUST_IGNORE_CUB_VERSION_CHECK'
]})
include_dirs = get_include_dirs()
else:
extension = CppExtension
with_cuda = False
extensions = []
extensions.append(
extension(
name='torchsdf._C',
sources=sources,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
include_dirs=include_dirs
)
)
# use cudart_static instead
for extension in extensions:
extension.libraries = ['cudart_static' if x == 'cudart' else x
for x in extension.libraries]
return extensions
def get_include_dirs():
include_dirs = []
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
return include_dirs
if __name__ == '__main__':
setup(
# Metadata
name=PACKAGE_NAME,
version=version,
license=LICENSE,
# Package info
# packages=find_packages(exclude=('tests')),
# include_package_data=True,
zip_safe=False,
ext_modules=get_extensions(),
cmdclass={
'build_ext': BuildExtension.with_options(no_python_abi_suffix=True)
}
)