forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
triplet.py
137 lines (118 loc) · 5.16 KB
/
triplet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
class TripletLossV2(nn.Layer):
"""Triplet loss with hard positive/negative mining.
Args:
margin (float): margin for triplet.
"""
def __init__(self, margin=0.5, normalize_feature=True):
super(TripletLossV2, self).__init__()
self.margin = margin
self.ranking_loss = paddle.nn.loss.MarginRankingLoss(margin=margin)
self.normalize_feature = normalize_feature
def forward(self, input, target):
"""
Args:
inputs: feature matrix with shape (batch_size, feat_dim)
target: ground truth labels with shape (num_classes)
"""
inputs = input["features"]
if self.normalize_feature:
inputs = 1. * inputs / (paddle.expand_as(
paddle.norm(
inputs, p=2, axis=-1, keepdim=True), inputs) + 1e-12)
bs = inputs.shape[0]
# compute distance
dist = paddle.pow(inputs, 2).sum(axis=1, keepdim=True).expand([bs, bs])
dist = dist + dist.t()
dist = paddle.addmm(
input=dist, x=inputs, y=inputs.t(), alpha=-2.0, beta=1.0)
dist = paddle.clip(dist, min=1e-12).sqrt()
# hard negative mining
is_pos = paddle.expand(target, (
bs, bs)).equal(paddle.expand(target, (bs, bs)).t())
is_neg = paddle.expand(target, (
bs, bs)).not_equal(paddle.expand(target, (bs, bs)).t())
# `dist_ap` means distance(anchor, positive)
## both `dist_ap` and `relative_p_inds` with shape [N, 1]
'''
dist_ap, relative_p_inds = paddle.max(
paddle.reshape(dist[is_pos], (bs, -1)), axis=1, keepdim=True)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an, relative_n_inds = paddle.min(
paddle.reshape(dist[is_neg], (bs, -1)), axis=1, keepdim=True)
'''
dist_ap = paddle.max(paddle.reshape(
paddle.masked_select(dist, is_pos), (bs, -1)),
axis=1,
keepdim=True)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an = paddle.min(paddle.reshape(
paddle.masked_select(dist, is_neg), (bs, -1)),
axis=1,
keepdim=True)
# shape [N]
dist_ap = paddle.squeeze(dist_ap, axis=1)
dist_an = paddle.squeeze(dist_an, axis=1)
# Compute ranking hinge loss
y = paddle.ones_like(dist_an)
loss = self.ranking_loss(dist_an, dist_ap, y)
return {"TripletLossV2": loss}
class TripletLoss(nn.Layer):
"""Triplet loss with hard positive/negative mining.
Reference:
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
Args:
margin (float): margin for triplet.
"""
def __init__(self, margin=1.0):
super(TripletLoss, self).__init__()
self.margin = margin
self.ranking_loss = paddle.nn.loss.MarginRankingLoss(margin=margin)
def forward(self, input, target):
"""
Args:
inputs: feature matrix with shape (batch_size, feat_dim)
target: ground truth labels with shape (num_classes)
"""
inputs = input["features"]
bs = inputs.shape[0]
# Compute pairwise distance, replace by the official when merged
dist = paddle.pow(inputs, 2).sum(axis=1, keepdim=True).expand([bs, bs])
dist = dist + dist.t()
dist = paddle.addmm(
input=dist, x=inputs, y=inputs.t(), alpha=-2.0, beta=1.0)
dist = paddle.clip(dist, min=1e-12).sqrt()
mask = paddle.equal(
target.expand([bs, bs]), target.expand([bs, bs]).t())
mask_numpy_idx = mask.numpy()
dist_ap, dist_an = [], []
for i in range(bs):
# dist_ap_i = paddle.to_tensor(dist[i].numpy()[mask_numpy_idx[i]].max(),dtype='float64').unsqueeze(0)
# dist_ap_i.stop_gradient = False
# dist_ap.append(dist_ap_i)
dist_ap.append(
max([
dist[i][j] if mask_numpy_idx[i][j] == True else float(
"-inf") for j in range(bs)
]).unsqueeze(0))
# dist_an_i = paddle.to_tensor(dist[i].numpy()[mask_numpy_idx[i] == False].min(), dtype='float64').unsqueeze(0)
# dist_an_i.stop_gradient = False
# dist_an.append(dist_an_i)
dist_an.append(
min([
dist[i][k] if mask_numpy_idx[i][k] == False else float(
"inf") for k in range(bs)
]).unsqueeze(0))
dist_ap = paddle.concat(dist_ap, axis=0)
dist_an = paddle.concat(dist_an, axis=0)
# Compute ranking hinge loss
y = paddle.ones_like(dist_an)
loss = self.ranking_loss(dist_an, dist_ap, y)
return {"TripletLoss": loss}