forked from katetolstaya/multiagent_gnn_policies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_model_transfer.py
104 lines (79 loc) · 2.94 KB
/
test_model_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from os import path
import configparser
import numpy as np
import random
import gym
import gym_flock
import torch
import sys
from learner.state_with_delay import MultiAgentStateWithDelay
from learner.gnn_dagger import DAGGER
def test(args, actor_path, k):
# initialize gym env
env_name = args.get('env') #'FlockingLeader-v0' #
env = gym.make(env_name)
debug = args.getboolean('debug')
if isinstance(env.env, gym_flock.envs.FlockingRelativeEnv):
env.env.params_from_cfg(args)
# use seed
seed = args.getint('seed')
env.seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# initialize params tuple
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
learner = DAGGER(device, args, k=k)
n_test_episodes = args.getint('n_test_episodes')
learner.load_model(actor_path, map_location=device)
stats = {'mean': -1.0 * np.Inf, 'std': 0}
test_rewards = []
for _ in range(n_test_episodes):
ep_reward = 0
state = MultiAgentStateWithDelay(device, args, env.reset(), prev_state=None, k=k)
done = False
while not done:
action = learner.select_action(state)
next_state, reward, done, _ = env.step(action.cpu().numpy())
next_state = MultiAgentStateWithDelay(device, args, next_state, prev_state=state, k=k)
ep_reward += reward
state = next_state
# env.render()
test_rewards.append(ep_reward)
if debug:
print(ep_reward)
stats['mean'] = np.mean(test_rewards)
stats['std'] = np.std(test_rewards)
env.close()
return stats
def main():
# # fname = sys.argv[1]
# base_actor_path = 'models/ddpg_actor_FlockingRelative-v0_transfer'
# k = 3
# fname = 'cfg/n_twoflocks.cfg'
# actor_path = 'models/ddpg_actor_FlockingStochastic-v0_stoch2'
# k = 2
# fname = 'cfg/dagger_stoch.cfg'
# base_actor_path = 'models/ddpg_actor_FlockingStochastic-v0_transfer2_stoch'
base_actor_path = 'models/ddpg_actor_FlockingAirsimAccel-v0_transfer'
k=3
fname = 'cfg/airsim_dagger.cfg'
config_file = path.join(path.dirname(__file__), fname)
config = configparser.ConfigParser()
config.read(config_file)
printed_header = False
if config.sections():
for section_name in config.sections():
if not printed_header:
print(config[section_name].get('header'))
printed_header = True
k = config[section_name].getint('k')
actor_path = base_actor_path + str(k)
stats = test(config[section_name], actor_path, k=k)
print(section_name + ", " + str(stats['mean']) + ", " + str(stats['std']))
else:
actor_path = base_actor_path + str(k)
stats = test(config[config.default_section], actor_path, k=k)
print(str(stats['mean']) + ", " + str(stats['std']))
if __name__ == "__main__":
main()