Table of Contents
This tutorial demonstrates plotting ZTF cutouts and light curves. It is based heavily on https://github.com/ZwickyTransientFacility/ztf-avro-alert/blob/master/notebooks/Filtering_alerts.ipynb.
- Load a ZTF alert to a dict or a pandas DataFrame. For examples, see:
import gzip
import io
from typing import Optional
import aplpy
import matplotlib as mpl
import numpy as np
import pandas as pd
from astropy.io import fits
from astropy.time import Time
from matplotlib import pyplot as plt
import pittgoogle
def plot_lightcurve(lightcurve_df: pd.DataFrame, days_ago: bool = True):
"""Plot the per-band light curve of a single ZTF object.
Adapted from:
https://github.com/ZwickyTransientFacility/ztf-avro-alert/blob/master/notebooks/Filtering_alerts.ipynb
Parameters
----------
lightcurve_df
Lightcurve history of a ZTF object. Must contain columns
['jd','fid','magpsf','sigmapsf','diffmaglim']
days_ago
If True, x-axis will be number of days in the past.
Else x-axis will be Julian date.
"""
filter_code = pittgoogle.utils.ztf_fid_names() # dict
filter_color = {1: "green", 2: "red", 3: "pink"}
# set the x-axis (time) details
if days_ago:
now = Time.now().jd
t = lightcurve_df.jd - now
xlabel = "Days Ago"
else:
t = lightcurve_df.jd
xlabel = "Time (JD)"
# plot lightcurves by band
for fid, color in filter_color.items():
# plot detections in this filter:
w = (lightcurve_df.fid == fid) & ~lightcurve_df.magpsf.isnull()
if np.sum(w):
label = f"{fid}: {filter_code[fid]}"
kwargs = {"fmt": ".", "color": color, "label": label}
plt.errorbar(t[w], lightcurve_df.loc[w, "magpsf"], lightcurve_df.loc[w, "sigmapsf"], **kwargs)
# plot nondetections in this filter
wnodet = (lightcurve_df.fid == fid) & lightcurve_df.magpsf.isnull()
if np.sum(wnodet):
plt.scatter(
t[wnodet],
lightcurve_df.loc[wnodet, "diffmaglim"],
marker="v",
color=color,
alpha=0.25,
)
plt.gca().invert_yaxis()
plt.xlabel(xlabel)
plt.ylabel("Magnitude")
plt.legend()
plot_lightcurve(lightcurve_df)
def plot_stamp(stamp, fig=None, subplot=None, **kwargs):
"""Adapted from:
https://github.com/ZwickyTransientFacility/ztf-avro-alert/blob/master/notebooks/Filtering_alerts.ipynb
"""
with gzip.open(io.BytesIO(stamp), "rb") as f:
with fits.open(io.BytesIO(f.read())) as hdul:
if fig is None:
fig = plt.figure(figsize=(4, 4))
if subplot is None:
subplot = (1, 1, 1)
ffig = aplpy.FITSFigure(hdul[0], figure=fig, subplot=subplot, **kwargs)
ffig.show_grayscale(stretch="arcsinh")
return ffig
def plot_cutouts(alert_dict):
"""Adapted from:
https://github.com/ZwickyTransientFacility/ztf-avro-alert/blob/master/notebooks/Filtering_alerts.ipynb
"""
# fig, axes = plt.subplots(1,3, figsize=(12,4))
fig = plt.figure(figsize=(12, 4))
for i, cutout in enumerate(["Science", "Template", "Difference"]):
stamp = alert_dict["cutout{}".format(cutout)]["stampData"]
ffig = plot_stamp(stamp, fig=fig, subplot=(1, 3, i + 1))
ffig.set_title(cutout)
plot_cutouts(alert_dict)
plt.show(block=False)