diff --git a/Host/tinyml.ipynb b/Host/tinyml.ipynb index 256a093..d85e9e5 100644 --- a/Host/tinyml.ipynb +++ b/Host/tinyml.ipynb @@ -12,7 +12,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "3aa59cd7", "metadata": { "scrolled": false @@ -22,15 +22,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "Model: \"sequential_1\"\n", + "Model: \"sequential\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", - " dense_3 (Dense) (None, 32) 23072 \n", + " dense (Dense) (None, 32) 23072 \n", " \n", - " dense_4 (Dense) (None, 16) 528 \n", + " dense_1 (Dense) (None, 16) 528 \n", " \n", - " dense_5 (Dense) (None, 2) 34 \n", + " dense_2 (Dense) (None, 2) 34 \n", " \n", "=================================================================\n", "Total params: 23,634\n", @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "id": "43bcd7b1", "metadata": { "scrolled": true @@ -57,101 +57,101 @@ "output_type": "stream", "text": [ "Epoch 1/200\n", - "6/6 [==============================] - 0s 22ms/step - loss: 3.4654e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 1s 61ms/step - loss: 0.0338 - categorical_accuracy: 1.0000 - val_loss: 3.3762e-04 - val_categorical_accuracy: 1.0000\n", "Epoch 2/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 3.4654e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 8.1729e-05 - categorical_accuracy: 1.0000 - val_loss: 6.4333e-05 - val_categorical_accuracy: 1.0000\n", "Epoch 3/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 3.3268e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.1689e-05 - categorical_accuracy: 1.0000 - val_loss: 2.4793e-05 - val_categorical_accuracy: 1.0000\n", "Epoch 4/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 3.3268e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.5902e-06 - categorical_accuracy: 1.0000 - val_loss: 1.4142e-05 - val_categorical_accuracy: 1.0000\n", "Epoch 5/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 3.1882e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 3.3807e-06 - categorical_accuracy: 1.0000 - val_loss: 1.0154e-05 - val_categorical_accuracy: 1.0000\n", "Epoch 6/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 3.0495e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 2.7307e-06 - categorical_accuracy: 1.0000 - val_loss: 8.3227e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 7/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 3.0495e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 2.2622e-06 - categorical_accuracy: 1.0000 - val_loss: 7.3853e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 8/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 2.9109e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 2.0293e-06 - categorical_accuracy: 1.0000 - val_loss: 6.8435e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 9/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 2.7723e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.9018e-06 - categorical_accuracy: 1.0000 - val_loss: 6.5238e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 10/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.7723e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.8158e-06 - categorical_accuracy: 1.0000 - val_loss: 6.3342e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 11/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.6337e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.7659e-06 - categorical_accuracy: 1.0000 - val_loss: 6.1445e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 12/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 2.6337e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.7174e-06 - categorical_accuracy: 1.0000 - val_loss: 6.0036e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 13/200\n", - "6/6 [==============================] - 0s 11ms/step - loss: 2.6337e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.6772e-06 - categorical_accuracy: 1.0000 - val_loss: 5.8790e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 14/200\n", - "6/6 [==============================] - 0s 11ms/step - loss: 2.6337e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.6370e-06 - categorical_accuracy: 1.0000 - val_loss: 5.7815e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 15/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.4951e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.6176e-06 - categorical_accuracy: 1.0000 - val_loss: 5.6677e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 16/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 2.4951e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.5719e-06 - categorical_accuracy: 1.0000 - val_loss: 5.5810e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 17/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 2.4951e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 12ms/step - loss: 1.5442e-06 - categorical_accuracy: 1.0000 - val_loss: 5.4943e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 18/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 2.3565e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.5137e-06 - categorical_accuracy: 1.0000 - val_loss: 5.3914e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 19/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 2.2178e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 1.4929e-06 - categorical_accuracy: 1.0000 - val_loss: 5.2993e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 20/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 2.2178e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.4638e-06 - categorical_accuracy: 1.0000 - val_loss: 5.2126e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 21/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 2.2178e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.4430e-06 - categorical_accuracy: 1.0000 - val_loss: 5.1259e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 22/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.2178e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.4180e-06 - categorical_accuracy: 1.0000 - val_loss: 5.0392e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 23/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.0792e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.3958e-06 - categorical_accuracy: 1.0000 - val_loss: 4.9525e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 24/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 2.0792e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.3681e-06 - categorical_accuracy: 1.0000 - val_loss: 4.8766e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 25/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.0792e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.3432e-06 - categorical_accuracy: 1.0000 - val_loss: 4.8008e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 26/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.0792e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.3224e-06 - categorical_accuracy: 1.0000 - val_loss: 4.7303e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 27/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 2.0792e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.3044e-06 - categorical_accuracy: 1.0000 - val_loss: 4.6328e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 28/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.9406e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.2711e-06 - categorical_accuracy: 1.0000 - val_loss: 4.5407e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 29/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.9406e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.2461e-06 - categorical_accuracy: 1.0000 - val_loss: 4.4648e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 30/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.9406e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.2295e-06 - categorical_accuracy: 1.0000 - val_loss: 4.3944e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 31/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 1.9406e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.2087e-06 - categorical_accuracy: 1.0000 - val_loss: 4.3294e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 32/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.9406e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.1907e-06 - categorical_accuracy: 1.0000 - val_loss: 4.2535e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 33/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.8020e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.1741e-06 - categorical_accuracy: 1.0000 - val_loss: 4.1939e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 34/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.8020e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.1547e-06 - categorical_accuracy: 1.0000 - val_loss: 4.1397e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 35/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.8020e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.1353e-06 - categorical_accuracy: 1.0000 - val_loss: 4.0910e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 36/200\n", - "6/6 [==============================] - 0s 12ms/step - loss: 1.8020e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.1200e-06 - categorical_accuracy: 1.0000 - val_loss: 4.0314e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 37/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.8020e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.1061e-06 - categorical_accuracy: 1.0000 - val_loss: 3.9826e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 38/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.8020e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 1.0854e-06 - categorical_accuracy: 1.0000 - val_loss: 3.9176e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 39/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.8020e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 1.0756e-06 - categorical_accuracy: 1.0000 - val_loss: 3.8688e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 40/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 1.0604e-06 - categorical_accuracy: 1.0000 - val_loss: 3.8092e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 41/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 1.0452e-06 - categorical_accuracy: 1.0000 - val_loss: 3.7496e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 42/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 1.0299e-06 - categorical_accuracy: 1.0000 - val_loss: 3.6954e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 43/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 1.0202e-06 - categorical_accuracy: 1.0000 - val_loss: 3.6196e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 44/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 9.9941e-07 - categorical_accuracy: 1.0000 - val_loss: 3.5383e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 45/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 9.8139e-07 - categorical_accuracy: 1.0000 - val_loss: 3.4949e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 46/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 9.7169e-07 - categorical_accuracy: 1.0000 - val_loss: 3.4462e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 47/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 9.5783e-07 - categorical_accuracy: 1.0000 - val_loss: 3.3974e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 48/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n" + "6/6 [==============================] - 0s 10ms/step - loss: 9.4674e-07 - categorical_accuracy: 1.0000 - val_loss: 3.3595e-06 - val_categorical_accuracy: 1.0000\n" ] }, { @@ -159,99 +159,99 @@ "output_type": "stream", "text": [ "Epoch 49/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 9.3703e-07 - categorical_accuracy: 1.0000 - val_loss: 3.3107e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 50/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 9.2179e-07 - categorical_accuracy: 1.0000 - val_loss: 3.2782e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 51/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 9.1070e-07 - categorical_accuracy: 1.0000 - val_loss: 3.2511e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 52/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 9.0099e-07 - categorical_accuracy: 1.0000 - val_loss: 3.2023e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 53/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 8.9129e-07 - categorical_accuracy: 1.0000 - val_loss: 3.1644e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 54/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 8.7882e-07 - categorical_accuracy: 1.0000 - val_loss: 3.1048e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 55/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 8.6911e-07 - categorical_accuracy: 1.0000 - val_loss: 3.0669e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 56/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.6634e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 8.6080e-07 - categorical_accuracy: 1.0000 - val_loss: 3.0290e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 57/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 8.5248e-07 - categorical_accuracy: 1.0000 - val_loss: 3.0019e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 58/200\n", - "6/6 [==============================] - 0s 14ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 15ms/step - loss: 8.4694e-07 - categorical_accuracy: 1.0000 - val_loss: 2.9531e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 59/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 8.3585e-07 - categorical_accuracy: 1.0000 - val_loss: 2.9206e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 60/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 8.1783e-07 - categorical_accuracy: 1.0000 - val_loss: 2.8935e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 61/200\n", - "6/6 [==============================] - 0s 11ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 8.0951e-07 - categorical_accuracy: 1.0000 - val_loss: 2.8718e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 62/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 8.0397e-07 - categorical_accuracy: 1.0000 - val_loss: 2.8339e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 63/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 7.9426e-07 - categorical_accuracy: 1.0000 - val_loss: 2.7851e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 64/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 7.8733e-07 - categorical_accuracy: 1.0000 - val_loss: 2.7526e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 65/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 7.7624e-07 - categorical_accuracy: 1.0000 - val_loss: 2.7147e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 66/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 7.6931e-07 - categorical_accuracy: 1.0000 - val_loss: 2.6876e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 67/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 7.5822e-07 - categorical_accuracy: 1.0000 - val_loss: 2.6551e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 68/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.5248e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 7.5129e-07 - categorical_accuracy: 1.0000 - val_loss: 2.6226e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 69/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 7.4713e-07 - categorical_accuracy: 1.0000 - val_loss: 2.5955e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 70/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 7.3466e-07 - categorical_accuracy: 1.0000 - val_loss: 2.5684e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 71/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 7.2496e-07 - categorical_accuracy: 1.0000 - val_loss: 2.5467e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 72/200\n", - "6/6 [==============================] - 0s 14ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 7.1941e-07 - categorical_accuracy: 1.0000 - val_loss: 2.5196e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 73/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 7.1248e-07 - categorical_accuracy: 1.0000 - val_loss: 2.4817e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 74/200\n", - "6/6 [==============================] - 0s 11ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 7.0416e-07 - categorical_accuracy: 1.0000 - val_loss: 2.4546e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 75/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 6.9723e-07 - categorical_accuracy: 1.0000 - val_loss: 2.4221e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 76/200\n", - "6/6 [==============================] - 0s 13ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 6.9030e-07 - categorical_accuracy: 1.0000 - val_loss: 2.3950e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 77/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 6.8614e-07 - categorical_accuracy: 1.0000 - val_loss: 2.3625e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 78/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.3862e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.7921e-07 - categorical_accuracy: 1.0000 - val_loss: 2.3300e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 79/200\n", - "6/6 [==============================] - 0s 13ms/step - loss: 1.2475e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.7228e-07 - categorical_accuracy: 1.0000 - val_loss: 2.2975e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 80/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 6.6674e-07 - categorical_accuracy: 1.0000 - val_loss: 2.2704e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 81/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.2475e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 6.6258e-07 - categorical_accuracy: 1.0000 - val_loss: 2.2487e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 82/200\n", - "6/6 [==============================] - 0s 13ms/step - loss: 1.2475e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 6.5703e-07 - categorical_accuracy: 1.0000 - val_loss: 2.2270e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 83/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.2475e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 6.5426e-07 - categorical_accuracy: 1.0000 - val_loss: 2.1891e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 84/200\n", - "6/6 [==============================] - 0s 11ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.5149e-07 - categorical_accuracy: 1.0000 - val_loss: 2.1620e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 85/200\n", - "6/6 [==============================] - 0s 11ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.4317e-07 - categorical_accuracy: 1.0000 - val_loss: 2.1403e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 86/200\n", - "6/6 [==============================] - 0s 11ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.3901e-07 - categorical_accuracy: 1.0000 - val_loss: 2.1187e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 87/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.3347e-07 - categorical_accuracy: 1.0000 - val_loss: 2.0916e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 88/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 6.2515e-07 - categorical_accuracy: 1.0000 - val_loss: 2.0590e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 89/200\n", - "6/6 [==============================] - 0s 12ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 6.1961e-07 - categorical_accuracy: 1.0000 - val_loss: 2.0374e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 90/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 6.1545e-07 - categorical_accuracy: 1.0000 - val_loss: 2.0157e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 91/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 6.0991e-07 - categorical_accuracy: 1.0000 - val_loss: 1.9940e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 92/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.0436e-07 - categorical_accuracy: 1.0000 - val_loss: 1.9724e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 93/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 6.0159e-07 - categorical_accuracy: 1.0000 - val_loss: 1.9507e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 94/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.9743e-07 - categorical_accuracy: 1.0000 - val_loss: 1.9290e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 95/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.9050e-07 - categorical_accuracy: 1.0000 - val_loss: 1.9073e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 96/200\n" ] }, @@ -259,99 +259,99 @@ "name": "stdout", "output_type": "stream", "text": [ - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.8911e-07 - categorical_accuracy: 1.0000 - val_loss: 1.8857e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 97/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.8357e-07 - categorical_accuracy: 1.0000 - val_loss: 1.8640e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 98/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 5.7664e-07 - categorical_accuracy: 1.0000 - val_loss: 1.8423e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 99/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.7248e-07 - categorical_accuracy: 1.0000 - val_loss: 1.8206e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 100/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 5.6694e-07 - categorical_accuracy: 1.0000 - val_loss: 1.8044e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 101/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.6416e-07 - categorical_accuracy: 1.0000 - val_loss: 1.7827e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 102/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.6139e-07 - categorical_accuracy: 1.0000 - val_loss: 1.7719e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 103/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.5446e-07 - categorical_accuracy: 1.0000 - val_loss: 1.7502e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 104/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.5307e-07 - categorical_accuracy: 1.0000 - val_loss: 1.7177e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 105/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 5.4892e-07 - categorical_accuracy: 1.0000 - val_loss: 1.7068e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 106/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.4614e-07 - categorical_accuracy: 1.0000 - val_loss: 1.6906e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 107/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 5.4337e-07 - categorical_accuracy: 1.0000 - val_loss: 1.6689e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 108/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 5.3505e-07 - categorical_accuracy: 1.0000 - val_loss: 1.6527e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 109/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 5.3505e-07 - categorical_accuracy: 1.0000 - val_loss: 1.6310e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 110/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.3090e-07 - categorical_accuracy: 1.0000 - val_loss: 1.6201e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 111/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 1.1089e-08 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.2396e-07 - categorical_accuracy: 1.0000 - val_loss: 1.6039e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 112/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 5.2119e-07 - categorical_accuracy: 1.0000 - val_loss: 1.5822e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 113/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.1703e-07 - categorical_accuracy: 1.0000 - val_loss: 1.5714e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 114/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.1288e-07 - categorical_accuracy: 1.0000 - val_loss: 1.5551e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 115/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.1010e-07 - categorical_accuracy: 1.0000 - val_loss: 1.5443e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 116/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.0594e-07 - categorical_accuracy: 1.0000 - val_loss: 1.5226e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 117/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 5.0594e-07 - categorical_accuracy: 1.0000 - val_loss: 1.5118e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 118/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 5.0040e-07 - categorical_accuracy: 1.0000 - val_loss: 1.5009e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 119/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.9901e-07 - categorical_accuracy: 1.0000 - val_loss: 1.4738e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 120/200\n", - "6/6 [==============================] - 0s 12ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 4.9486e-07 - categorical_accuracy: 1.0000 - val_loss: 1.4576e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 121/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.8931e-07 - categorical_accuracy: 1.0000 - val_loss: 1.4413e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 122/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.8654e-07 - categorical_accuracy: 1.0000 - val_loss: 1.4359e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 123/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.8515e-07 - categorical_accuracy: 1.0000 - val_loss: 1.4197e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 124/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.7961e-07 - categorical_accuracy: 1.0000 - val_loss: 1.4034e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 125/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.7545e-07 - categorical_accuracy: 1.0000 - val_loss: 1.3872e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 126/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.7406e-07 - categorical_accuracy: 1.0000 - val_loss: 1.3601e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 127/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.6852e-07 - categorical_accuracy: 1.0000 - val_loss: 1.3438e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 128/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.6575e-07 - categorical_accuracy: 1.0000 - val_loss: 1.3384e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 129/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 4.6297e-07 - categorical_accuracy: 1.0000 - val_loss: 1.3221e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 130/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 4.6020e-07 - categorical_accuracy: 1.0000 - val_loss: 1.3113e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 131/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 4.5743e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2950e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 132/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.5327e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2842e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 133/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 4.5050e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2734e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 134/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.4773e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2571e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 135/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.4357e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2517e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 136/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.4080e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2409e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 137/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.3941e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2246e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 138/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.3664e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2192e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 139/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 4.3525e-07 - categorical_accuracy: 1.0000 - val_loss: 1.2138e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 140/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 4.3387e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1975e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 141/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.3109e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1921e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 142/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 10ms/step - loss: 4.2693e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1812e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 143/200\n" ] }, @@ -359,99 +359,99 @@ "name": "stdout", "output_type": "stream", "text": [ - "6/6 [==============================] - 0s 9ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.2139e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1542e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 144/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.1862e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1487e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 145/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.1723e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1433e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 146/200\n", - "6/6 [==============================] - 0s 6ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.1446e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1271e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 147/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 4.1169e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1216e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 148/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.0891e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1108e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 149/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 4.0614e-07 - categorical_accuracy: 1.0000 - val_loss: 1.1000e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 150/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.0337e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0946e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 151/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 4.0198e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0837e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 152/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 9.7031e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.9783e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0783e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 153/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 11ms/step - loss: 3.9505e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0675e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 154/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.9228e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0566e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 155/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.9089e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0458e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 156/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 3.8812e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0404e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 157/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.8535e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0404e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 158/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.8258e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0349e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 159/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 3.8258e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0241e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 160/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.8119e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0187e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 161/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.7703e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0133e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 162/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.7703e-07 - categorical_accuracy: 1.0000 - val_loss: 1.0079e-06 - val_categorical_accuracy: 1.0000\n", "Epoch 163/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 6ms/step - loss: 3.7426e-07 - categorical_accuracy: 1.0000 - val_loss: 9.9702e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 164/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.7287e-07 - categorical_accuracy: 1.0000 - val_loss: 9.9702e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 165/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.7149e-07 - categorical_accuracy: 1.0000 - val_loss: 9.9160e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 166/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.6456e-07 - categorical_accuracy: 1.0000 - val_loss: 9.8618e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 167/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.6317e-07 - categorical_accuracy: 1.0000 - val_loss: 9.8076e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 168/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.6179e-07 - categorical_accuracy: 1.0000 - val_loss: 9.6993e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 169/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 3.5901e-07 - categorical_accuracy: 1.0000 - val_loss: 9.6993e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 170/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.5763e-07 - categorical_accuracy: 1.0000 - val_loss: 9.6451e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 171/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.5485e-07 - categorical_accuracy: 1.0000 - val_loss: 9.5909e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 172/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.5347e-07 - categorical_accuracy: 1.0000 - val_loss: 9.5909e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 173/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.5347e-07 - categorical_accuracy: 1.0000 - val_loss: 9.4825e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 174/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.5070e-07 - categorical_accuracy: 1.0000 - val_loss: 9.4283e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 175/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 9ms/step - loss: 3.5070e-07 - categorical_accuracy: 1.0000 - val_loss: 9.3741e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 176/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.4931e-07 - categorical_accuracy: 1.0000 - val_loss: 9.3741e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 177/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 11ms/step - loss: 3.4792e-07 - categorical_accuracy: 1.0000 - val_loss: 9.3200e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 178/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.4792e-07 - categorical_accuracy: 1.0000 - val_loss: 9.2116e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 179/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.4654e-07 - categorical_accuracy: 1.0000 - val_loss: 9.1574e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 180/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.4515e-07 - categorical_accuracy: 1.0000 - val_loss: 9.1574e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 181/200\n", - "6/6 [==============================] - 0s 10ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.4377e-07 - categorical_accuracy: 1.0000 - val_loss: 9.1032e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 182/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.4377e-07 - categorical_accuracy: 1.0000 - val_loss: 9.0490e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 183/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.3961e-07 - categorical_accuracy: 1.0000 - val_loss: 9.0490e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 184/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.3683e-07 - categorical_accuracy: 1.0000 - val_loss: 8.9407e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 185/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.3545e-07 - categorical_accuracy: 1.0000 - val_loss: 8.8323e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 186/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.3545e-07 - categorical_accuracy: 1.0000 - val_loss: 8.8323e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 187/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.3268e-07 - categorical_accuracy: 1.0000 - val_loss: 8.7781e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 188/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.2990e-07 - categorical_accuracy: 1.0000 - val_loss: 8.7239e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 189/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.2852e-07 - categorical_accuracy: 1.0000 - val_loss: 8.6155e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 190/200\n" ] }, @@ -459,27 +459,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "6/6 [==============================] - 0s 7ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.2713e-07 - categorical_accuracy: 1.0000 - val_loss: 8.5072e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 191/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.2713e-07 - categorical_accuracy: 1.0000 - val_loss: 8.4530e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 192/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.2713e-07 - categorical_accuracy: 1.0000 - val_loss: 8.3988e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 193/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.2575e-07 - categorical_accuracy: 1.0000 - val_loss: 8.3988e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 194/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.2159e-07 - categorical_accuracy: 1.0000 - val_loss: 8.3446e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 195/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.2159e-07 - categorical_accuracy: 1.0000 - val_loss: 8.2904e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 196/200\n", - "6/6 [==============================] - 0s 8ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.2020e-07 - categorical_accuracy: 1.0000 - val_loss: 8.2362e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 197/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 7ms/step - loss: 3.2020e-07 - categorical_accuracy: 1.0000 - val_loss: 8.1279e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 198/200\n", - "6/6 [==============================] - 0s 7ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.2020e-07 - categorical_accuracy: 1.0000 - val_loss: 8.1279e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 199/200\n", - "6/6 [==============================] - 0s 13ms/step - loss: 8.3169e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n", + "6/6 [==============================] - 0s 8ms/step - loss: 3.1604e-07 - categorical_accuracy: 1.0000 - val_loss: 8.0737e-07 - val_categorical_accuracy: 1.0000\n", "Epoch 200/200\n", - "6/6 [==============================] - 0s 9ms/step - loss: 6.9308e-09 - categorical_accuracy: 1.0000 - val_loss: 0.0000e+00 - val_categorical_accuracy: 1.0000\n" + "6/6 [==============================] - 0s 10ms/step - loss: 3.1327e-07 - categorical_accuracy: 1.0000 - val_loss: 8.0737e-07 - val_categorical_accuracy: 1.0000\n" ] } ], diff --git a/Images/arduino1.png b/Images/arduino1.png new file mode 100644 index 0000000..1c2e2ff Binary files /dev/null and b/Images/arduino1.png differ diff --git a/Images/arduino2.png b/Images/arduino2.png new file mode 100644 index 0000000..2949441 Binary files /dev/null and b/Images/arduino2.png differ diff --git a/Images/arduino_lib.png b/Images/arduino_lib.png new file mode 100644 index 0000000..0e6fe94 Binary files /dev/null and b/Images/arduino_lib.png differ diff --git a/README.md b/README.md index 2b0e1c7..ac0b59a 100644 --- a/README.md +++ b/README.md @@ -29,7 +29,11 @@ ### Arduino - ESP32 Arduino 2.0.3 +![image](Images/arduino1.png) +![image](Images/arduino2.png) + - TensorFlowLite_ESP32 0.9.0 +![image](Images/arduino_lib.png) ## 设计 diff --git a/predict_gesture/predict_gesture.ino b/predict_gesture/predict_gesture.ino index 02a67d4..d57c23c 100644 --- a/predict_gesture/predict_gesture.ino +++ b/predict_gesture/predict_gesture.ino @@ -250,7 +250,6 @@ void Result() else { Led.Blank(); - } }