forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 1
/
miniminer_tests.cpp
712 lines (647 loc) · 40.4 KB
/
miniminer_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/mini_miner.h>
#include <random.h>
#include <txmempool.h>
#include <util/time.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <boost/test/unit_test.hpp>
#include <optional>
#include <vector>
BOOST_FIXTURE_TEST_SUITE(miniminer_tests, TestingSetup)
const CAmount low_fee{CENT/2000}; // 500 ṩ
const CAmount med_fee{CENT/200}; // 5000 ṩ
const CAmount high_fee{CENT/10}; // 100_000 ṩ
static inline CTransactionRef make_tx(const std::vector<COutPoint>& inputs, size_t num_outputs)
{
CMutableTransaction tx = CMutableTransaction();
tx.vin.resize(inputs.size());
tx.vout.resize(num_outputs);
for (size_t i = 0; i < inputs.size(); ++i) {
tx.vin[i].prevout = inputs[i];
}
for (size_t i = 0; i < num_outputs; ++i) {
tx.vout[i].scriptPubKey = CScript() << OP_11 << OP_EQUAL;
// The actual input and output values of these transactions don't really
// matter, since all accounting will use the entries' cached fees.
tx.vout[i].nValue = COIN;
}
return MakeTransactionRef(tx);
}
static inline bool sanity_check(const std::vector<CTransactionRef>& transactions,
const std::map<COutPoint, CAmount>& bumpfees)
{
// No negative bumpfees.
for (const auto& [outpoint, fee] : bumpfees) {
if (fee < 0) return false;
if (fee == 0) continue;
auto outpoint_ = outpoint; // structured bindings can't be captured in C++17, so we need to use a variable
const bool found = std::any_of(transactions.cbegin(), transactions.cend(), [&](const auto& tx) {
return outpoint_.hash == tx->GetHash() && outpoint_.n < tx->vout.size();
});
if (!found) return false;
}
for (const auto& tx : transactions) {
// If tx has multiple outputs, they must all have the same bumpfee (if they exist).
if (tx->vout.size() > 1) {
std::set<CAmount> distinct_bumpfees;
for (size_t i{0}; i < tx->vout.size(); ++i) {
const auto bumpfee = bumpfees.find(COutPoint{tx->GetHash(), static_cast<uint32_t>(i)});
if (bumpfee != bumpfees.end()) distinct_bumpfees.insert(bumpfee->second);
}
if (distinct_bumpfees.size() > 1) return false;
}
}
return true;
}
template <typename Key, typename Value>
Value Find(const std::map<Key, Value>& map, const Key& key)
{
auto it = map.find(key);
BOOST_CHECK_MESSAGE(it != map.end(), strprintf("Cannot find %s", key.ToString()));
return it->second;
}
BOOST_FIXTURE_TEST_CASE(miniminer_negative, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(::cs_main, pool.cs);
TestMemPoolEntryHelper entry;
// Create a transaction that will be prioritised to have a negative modified fee.
const CAmount positive_base_fee{1000};
const CAmount negative_fee_delta{-50000};
const CAmount negative_modified_fees{positive_base_fee + negative_fee_delta};
BOOST_CHECK(negative_modified_fees < 0);
const auto tx_mod_negative = make_tx({COutPoint{m_coinbase_txns[4]->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(positive_base_fee).FromTx(tx_mod_negative));
pool.PrioritiseTransaction(tx_mod_negative->GetHash(), negative_fee_delta);
const COutPoint only_outpoint{tx_mod_negative->GetHash(), 0};
// When target feerate is 0, transactions with negative fees are not selected.
node::MiniMiner mini_miner_target0(pool, {only_outpoint});
BOOST_CHECK(mini_miner_target0.IsReadyToCalculate());
const CFeeRate feerate_zero(0);
mini_miner_target0.BuildMockTemplate(feerate_zero);
// Check the quit condition:
BOOST_CHECK(negative_modified_fees < feerate_zero.GetFee(Assert(pool.GetEntry(tx_mod_negative->GetHash()))->GetTxSize()));
BOOST_CHECK(mini_miner_target0.GetMockTemplateTxids().empty());
// With no target feerate, the template includes all transactions, even negative feerate ones.
node::MiniMiner mini_miner_no_target(pool, {only_outpoint});
BOOST_CHECK(mini_miner_no_target.IsReadyToCalculate());
mini_miner_no_target.BuildMockTemplate(std::nullopt);
const auto template_txids{mini_miner_no_target.GetMockTemplateTxids()};
BOOST_CHECK_EQUAL(template_txids.size(), 1);
BOOST_CHECK(template_txids.count(tx_mod_negative->GetHash().ToUint256()) > 0);
}
BOOST_FIXTURE_TEST_CASE(miniminer_1p1c, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(::cs_main, pool.cs);
TestMemPoolEntryHelper entry;
// Create a parent tx0 and child tx1 with normal fees:
const auto tx0 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx0));
const auto tx1 = make_tx({COutPoint{tx0->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx1));
// Create a low-feerate parent tx2 and high-feerate child tx3 (cpfp)
const auto tx2 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx2));
const auto tx3 = make_tx({COutPoint{tx2->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx3));
// Create a parent tx4 and child tx5 where both have low fees
const auto tx4 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx4));
const auto tx5 = make_tx({COutPoint{tx4->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx5));
const CAmount tx5_delta{CENT/100};
// Make tx5's modified fee much higher than its base fee. This should cause it to pass
// the fee-related checks despite being low-feerate.
pool.PrioritiseTransaction(tx5->GetHash(), tx5_delta);
const CAmount tx5_mod_fee{low_fee + tx5_delta};
// Create a high-feerate parent tx6, low-feerate child tx7
const auto tx6 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx6));
const auto tx7 = make_tx({COutPoint{tx6->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx7));
std::vector<COutPoint> all_unspent_outpoints({
COutPoint{tx0->GetHash(), 1},
COutPoint{tx1->GetHash(), 0},
COutPoint{tx2->GetHash(), 1},
COutPoint{tx3->GetHash(), 0},
COutPoint{tx4->GetHash(), 1},
COutPoint{tx5->GetHash(), 0},
COutPoint{tx6->GetHash(), 1},
COutPoint{tx7->GetHash(), 0}
});
for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
std::vector<COutPoint> all_spent_outpoints({
COutPoint{tx0->GetHash(), 0},
COutPoint{tx2->GetHash(), 0},
COutPoint{tx4->GetHash(), 0},
COutPoint{tx6->GetHash(), 0}
});
for (const auto& outpoint : all_spent_outpoints) BOOST_CHECK(pool.GetConflictTx(outpoint) != nullptr);
std::vector<COutPoint> all_parent_outputs({
COutPoint{tx0->GetHash(), 0},
COutPoint{tx0->GetHash(), 1},
COutPoint{tx2->GetHash(), 0},
COutPoint{tx2->GetHash(), 1},
COutPoint{tx4->GetHash(), 0},
COutPoint{tx4->GetHash(), 1},
COutPoint{tx6->GetHash(), 0},
COutPoint{tx6->GetHash(), 1}
});
std::vector<CTransactionRef> all_transactions{tx0, tx1, tx2, tx3, tx4, tx5, tx6, tx7};
struct TxDimensions {
int32_t vsize; CAmount mod_fee; CFeeRate feerate;
};
std::map<uint256, TxDimensions> tx_dims;
for (const auto& tx : all_transactions) {
const auto& entry{*Assert(pool.GetEntry(tx->GetHash()))};
tx_dims.emplace(tx->GetHash(), TxDimensions{entry.GetTxSize(), entry.GetModifiedFee(),
CFeeRate(entry.GetModifiedFee(), entry.GetTxSize())});
}
const std::vector<CFeeRate> various_normal_feerates({CFeeRate(0), CFeeRate(500), CFeeRate(999),
CFeeRate(1000), CFeeRate(2000), CFeeRate(2500),
CFeeRate(3333), CFeeRate(7800), CFeeRate(11199),
CFeeRate(23330), CFeeRate(50000), CFeeRate(5*CENT)});
// All nonexistent entries have a bumpfee of zero, regardless of feerate
std::vector<COutPoint> nonexistent_outpoints({ COutPoint{Txid::FromUint256(GetRandHash()), 0}, COutPoint{Txid::FromUint256(GetRandHash()), 3} });
for (const auto& outpoint : nonexistent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
for (const auto& feerate : various_normal_feerates) {
node::MiniMiner mini_miner(pool, nonexistent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(feerate);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
BOOST_CHECK(bump_fees.size() == nonexistent_outpoints.size());
for (const auto& outpoint: nonexistent_outpoints) {
auto it = bump_fees.find(outpoint);
BOOST_CHECK(it != bump_fees.end());
BOOST_CHECK_EQUAL(it->second, 0);
}
}
// Gather bump fees for all available UTXOs.
for (const auto& target_feerate : various_normal_feerates) {
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
// Check tx0 bumpfee: no other bumper.
const TxDimensions& tx0_dimensions = tx_dims.find(tx0->GetHash())->second;
CAmount bumpfee0 = Find(bump_fees, COutPoint{tx0->GetHash(), 1});
if (target_feerate <= tx0_dimensions.feerate) {
BOOST_CHECK_EQUAL(bumpfee0, 0);
} else {
// Difference is fee to bump tx0 from current to target feerate.
BOOST_CHECK_EQUAL(bumpfee0, target_feerate.GetFee(tx0_dimensions.vsize) - tx0_dimensions.mod_fee);
}
// Check tx2 bumpfee: assisted by tx3.
const TxDimensions& tx2_dimensions = tx_dims.find(tx2->GetHash())->second;
const TxDimensions& tx3_dimensions = tx_dims.find(tx3->GetHash())->second;
const CFeeRate tx2_feerate = CFeeRate(tx2_dimensions.mod_fee + tx3_dimensions.mod_fee, tx2_dimensions.vsize + tx3_dimensions.vsize);
CAmount bumpfee2 = Find(bump_fees, COutPoint{tx2->GetHash(), 1});
if (target_feerate <= tx2_feerate) {
// As long as target feerate is below tx3's ancestor feerate, there is no bump fee.
BOOST_CHECK_EQUAL(bumpfee2, 0);
} else {
// Difference is fee to bump tx2 from current to target feerate, without tx3.
BOOST_CHECK_EQUAL(bumpfee2, target_feerate.GetFee(tx2_dimensions.vsize) - tx2_dimensions.mod_fee);
}
// If tx5’s modified fees are sufficient for tx4 and tx5 to be picked
// into the block, our prospective new transaction would not need to
// bump tx4 when using tx4’s second output. If however even tx5’s
// modified fee (which essentially indicates "effective feerate") is
// not sufficient to bump tx4, using the second output of tx4 would
// require our transaction to bump tx4 from scratch since we evaluate
// transaction packages per ancestor sets and do not consider multiple
// children’s fees.
const TxDimensions& tx4_dimensions = tx_dims.find(tx4->GetHash())->second;
const TxDimensions& tx5_dimensions = tx_dims.find(tx5->GetHash())->second;
const CFeeRate tx4_feerate = CFeeRate(tx4_dimensions.mod_fee + tx5_dimensions.mod_fee, tx4_dimensions.vsize + tx5_dimensions.vsize);
CAmount bumpfee4 = Find(bump_fees, COutPoint{tx4->GetHash(), 1});
if (target_feerate <= tx4_feerate) {
// As long as target feerate is below tx5's ancestor feerate, there is no bump fee.
BOOST_CHECK_EQUAL(bumpfee4, 0);
} else {
// Difference is fee to bump tx4 from current to target feerate, without tx5.
BOOST_CHECK_EQUAL(bumpfee4, target_feerate.GetFee(tx4_dimensions.vsize) - tx4_dimensions.mod_fee);
}
}
// Spent outpoints should usually not be requested as they would not be
// considered available. However, when they are explicitly requested, we
// can calculate their bumpfee to facilitate RBF-replacements
for (const auto& target_feerate : various_normal_feerates) {
node::MiniMiner mini_miner_all_spent(pool, all_spent_outpoints);
BOOST_CHECK(mini_miner_all_spent.IsReadyToCalculate());
auto bump_fees_all_spent = mini_miner_all_spent.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner_all_spent.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees_all_spent.size(), all_spent_outpoints.size());
node::MiniMiner mini_miner_all_parents(pool, all_parent_outputs);
BOOST_CHECK(mini_miner_all_parents.IsReadyToCalculate());
auto bump_fees_all_parents = mini_miner_all_parents.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner_all_parents.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees_all_parents.size(), all_parent_outputs.size());
for (auto& bump_fees : {bump_fees_all_parents, bump_fees_all_spent}) {
// For all_parents case, both outputs from the parent should have the same bump fee,
// even though only one of them is in a to-be-replaced transaction.
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
// Check tx0 bumpfee: no other bumper.
const TxDimensions& tx0_dimensions = tx_dims.find(tx0->GetHash())->second;
CAmount it0_spent = Find(bump_fees, COutPoint{tx0->GetHash(), 0});
if (target_feerate <= tx0_dimensions.feerate) {
BOOST_CHECK_EQUAL(it0_spent, 0);
} else {
// Difference is fee to bump tx0 from current to target feerate.
BOOST_CHECK_EQUAL(it0_spent, target_feerate.GetFee(tx0_dimensions.vsize) - tx0_dimensions.mod_fee);
}
// Check tx2 bumpfee: no other bumper, because tx3 is to-be-replaced.
const TxDimensions& tx2_dimensions = tx_dims.find(tx2->GetHash())->second;
const CFeeRate tx2_feerate_unbumped = tx2_dimensions.feerate;
auto it2_spent = Find(bump_fees, COutPoint{tx2->GetHash(), 0});
if (target_feerate <= tx2_feerate_unbumped) {
BOOST_CHECK_EQUAL(it2_spent, 0);
} else {
// Difference is fee to bump tx2 from current to target feerate, without tx3.
BOOST_CHECK_EQUAL(it2_spent, target_feerate.GetFee(tx2_dimensions.vsize) - tx2_dimensions.mod_fee);
}
// Check tx4 bumpfee: no other bumper, because tx5 is to-be-replaced.
const TxDimensions& tx4_dimensions = tx_dims.find(tx4->GetHash())->second;
const CFeeRate tx4_feerate_unbumped = tx4_dimensions.feerate;
auto it4_spent = Find(bump_fees, COutPoint{tx4->GetHash(), 0});
if (target_feerate <= tx4_feerate_unbumped) {
BOOST_CHECK_EQUAL(it4_spent, 0);
} else {
// Difference is fee to bump tx4 from current to target feerate, without tx5.
BOOST_CHECK_EQUAL(it4_spent, target_feerate.GetFee(tx4_dimensions.vsize) - tx4_dimensions.mod_fee);
}
}
}
// Check m_inclusion_order for equivalent mempool- and manually-constructed MiniMiners.
// (We cannot check bump fees in manually-constructed MiniMiners because it doesn't know what
// outpoints are requested).
std::vector<node::MiniMinerMempoolEntry> miniminer_info;
{
const int32_t tx0_vsize{tx_dims.at(tx0->GetHash()).vsize};
const int32_t tx1_vsize{tx_dims.at(tx1->GetHash()).vsize};
const int32_t tx2_vsize{tx_dims.at(tx2->GetHash()).vsize};
const int32_t tx3_vsize{tx_dims.at(tx3->GetHash()).vsize};
const int32_t tx4_vsize{tx_dims.at(tx4->GetHash()).vsize};
const int32_t tx5_vsize{tx_dims.at(tx5->GetHash()).vsize};
const int32_t tx6_vsize{tx_dims.at(tx6->GetHash()).vsize};
const int32_t tx7_vsize{tx_dims.at(tx7->GetHash()).vsize};
miniminer_info.emplace_back(tx0,/*vsize_self=*/tx0_vsize,/*vsize_ancestor=*/tx0_vsize,/*fee_self=*/med_fee,/*fee_ancestor=*/med_fee);
miniminer_info.emplace_back(tx1, tx1_vsize, tx0_vsize + tx1_vsize, med_fee, 2*med_fee);
miniminer_info.emplace_back(tx2, tx2_vsize, tx2_vsize, low_fee, low_fee);
miniminer_info.emplace_back(tx3, tx3_vsize, tx2_vsize + tx3_vsize, high_fee, low_fee + high_fee);
miniminer_info.emplace_back(tx4, tx4_vsize, tx4_vsize, low_fee, low_fee);
miniminer_info.emplace_back(tx5, tx5_vsize, tx4_vsize + tx5_vsize, tx5_mod_fee, low_fee + tx5_mod_fee);
miniminer_info.emplace_back(tx6, tx6_vsize, tx6_vsize, high_fee, high_fee);
miniminer_info.emplace_back(tx7, tx7_vsize, tx6_vsize + tx7_vsize, low_fee, high_fee + low_fee);
}
std::map<Txid, std::set<Txid>> descendant_caches;
descendant_caches.emplace(tx0->GetHash(), std::set<Txid>{tx0->GetHash(), tx1->GetHash()});
descendant_caches.emplace(tx1->GetHash(), std::set<Txid>{tx1->GetHash()});
descendant_caches.emplace(tx2->GetHash(), std::set<Txid>{tx2->GetHash(), tx3->GetHash()});
descendant_caches.emplace(tx3->GetHash(), std::set<Txid>{tx3->GetHash()});
descendant_caches.emplace(tx4->GetHash(), std::set<Txid>{tx4->GetHash(), tx5->GetHash()});
descendant_caches.emplace(tx5->GetHash(), std::set<Txid>{tx5->GetHash()});
descendant_caches.emplace(tx6->GetHash(), std::set<Txid>{tx6->GetHash(), tx7->GetHash()});
descendant_caches.emplace(tx7->GetHash(), std::set<Txid>{tx7->GetHash()});
node::MiniMiner miniminer_manual(miniminer_info, descendant_caches);
// Use unspent outpoints to avoid entries being omitted.
node::MiniMiner miniminer_pool(pool, all_unspent_outpoints);
BOOST_CHECK(miniminer_manual.IsReadyToCalculate());
BOOST_CHECK(miniminer_pool.IsReadyToCalculate());
for (const auto& sequences : {miniminer_manual.Linearize(), miniminer_pool.Linearize()}) {
// tx6 is selected first: high feerate with no parents to bump
BOOST_CHECK_EQUAL(Find(sequences, tx6->GetHash()), 0);
// tx2 + tx3 CPFP are selected next
BOOST_CHECK_EQUAL(Find(sequences, tx2->GetHash()), 1);
BOOST_CHECK_EQUAL(Find(sequences, tx3->GetHash()), 1);
// tx4 + prioritised tx5 CPFP
BOOST_CHECK_EQUAL(Find(sequences, tx4->GetHash()), 2);
BOOST_CHECK_EQUAL(Find(sequences, tx5->GetHash()), 2);
BOOST_CHECK_EQUAL(Find(sequences, tx0->GetHash()), 3);
BOOST_CHECK_EQUAL(Find(sequences, tx1->GetHash()), 3);
// tx7 is selected last: low feerate with no children
BOOST_CHECK_EQUAL(Find(sequences, tx7->GetHash()), 4);
}
}
BOOST_FIXTURE_TEST_CASE(miniminer_overlap, TestChain100Setup)
{
/* Tx graph for `miniminer_overlap` unit test:
*
* coinbase_tx [mined] ... block-chain
* -------------------------------------------------
* / | \ \ ... mempool
* / | \ |
* tx0 tx1 tx2 tx4
* [low] [med] [high] [high]
* \ | / |
* \ | / tx5
* \ | / [low]
* tx3 / \
* [high] tx6 tx7
* [med] [high]
*
* NOTE:
* -> "low"/"med"/"high" denote the _absolute_ fee of each tx
* -> tx3 has 3 inputs and 3 outputs, all other txs have 1 input and 2 outputs
* -> tx3's feerate is lower than tx2's, as tx3 has more weight (due to having more inputs and outputs)
*
* -> tx2_FR = high / tx2_vsize
* -> tx3_FR = high / tx3_vsize
* -> tx3_ASFR = (low+med+high+high) / (tx0_vsize + tx1_vsize + tx2_vsize + tx3_vsize)
* -> tx4_FR = high / tx4_vsize
* -> tx6_ASFR = (high+low+med) / (tx4_vsize + tx5_vsize + tx6_vsize)
* -> tx7_ASFR = (high+low+high) / (tx4_vsize + tx5_vsize + tx7_vsize) */
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(::cs_main, pool.cs);
TestMemPoolEntryHelper entry;
// Create 3 parents of different feerates, and 1 child spending outputs from all 3 parents.
const auto tx0 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx0));
const auto tx1 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx1));
const auto tx2 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx2));
const auto tx3 = make_tx({COutPoint{tx0->GetHash(), 0}, COutPoint{tx1->GetHash(), 0}, COutPoint{tx2->GetHash(), 0}}, /*num_outputs=*/3);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx3));
// Create 1 grandparent and 1 parent, then 2 children.
const auto tx4 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx4));
const auto tx5 = make_tx({COutPoint{tx4->GetHash(), 0}}, /*num_outputs=*/3);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx5));
const auto tx6 = make_tx({COutPoint{tx5->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx6));
const auto tx7 = make_tx({COutPoint{tx5->GetHash(), 1}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx7));
std::vector<CTransactionRef> all_transactions{tx0, tx1, tx2, tx3, tx4, tx5, tx6, tx7};
std::vector<int64_t> tx_vsizes;
tx_vsizes.reserve(all_transactions.size());
for (const auto& tx : all_transactions) tx_vsizes.push_back(GetVirtualTransactionSize(*tx));
std::vector<COutPoint> all_unspent_outpoints({
COutPoint{tx0->GetHash(), 1},
COutPoint{tx1->GetHash(), 1},
COutPoint{tx2->GetHash(), 1},
COutPoint{tx3->GetHash(), 0},
COutPoint{tx3->GetHash(), 1},
COutPoint{tx3->GetHash(), 2},
COutPoint{tx4->GetHash(), 1},
COutPoint{tx5->GetHash(), 2},
COutPoint{tx6->GetHash(), 0},
COutPoint{tx7->GetHash(), 0}
});
for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
const auto tx2_feerate = CFeeRate(high_fee, tx_vsizes[2]);
const auto tx3_feerate = CFeeRate(high_fee, tx_vsizes[3]);
// tx3's feerate is lower than tx2's. same fee, different weight.
BOOST_CHECK(tx2_feerate > tx3_feerate);
const auto tx3_anc_feerate = CFeeRate(low_fee + med_fee + high_fee + high_fee, tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]);
const auto& tx3_entry{*Assert(pool.GetEntry(tx3->GetHash()))};
BOOST_CHECK(tx3_anc_feerate == CFeeRate(tx3_entry.GetModFeesWithAncestors(), tx3_entry.GetSizeWithAncestors()));
const auto tx4_feerate = CFeeRate(high_fee, tx_vsizes[4]);
const auto tx6_anc_feerate = CFeeRate(high_fee + low_fee + med_fee, tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6]);
const auto& tx6_entry{*Assert(pool.GetEntry(tx6->GetHash()))};
BOOST_CHECK(tx6_anc_feerate == CFeeRate(tx6_entry.GetModFeesWithAncestors(), tx6_entry.GetSizeWithAncestors()));
const auto tx7_anc_feerate = CFeeRate(high_fee + low_fee + high_fee, tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[7]);
const auto& tx7_entry{*Assert(pool.GetEntry(tx7->GetHash()))};
BOOST_CHECK(tx7_anc_feerate == CFeeRate(tx7_entry.GetModFeesWithAncestors(), tx7_entry.GetSizeWithAncestors()));
BOOST_CHECK(tx4_feerate > tx6_anc_feerate);
BOOST_CHECK(tx4_feerate > tx7_anc_feerate);
// Extremely high feerate: everybody's bumpfee is from their full ancestor set.
{
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
const CFeeRate very_high_feerate(COIN);
BOOST_CHECK(tx3_anc_feerate < very_high_feerate);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(very_high_feerate);
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx0_bumpfee = bump_fees.find(COutPoint{tx0->GetHash(), 1});
BOOST_CHECK(tx0_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx0_bumpfee->second, very_high_feerate.GetFee(tx_vsizes[0]) - low_fee);
const auto tx3_bumpfee = bump_fees.find(COutPoint{tx3->GetHash(), 0});
BOOST_CHECK(tx3_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx3_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee));
const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0});
BOOST_CHECK(tx6_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx6_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6]) - (high_fee + low_fee + med_fee));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[7]) - (high_fee + low_fee + high_fee));
// Total fees: if spending multiple outputs from tx3 don't double-count fees.
node::MiniMiner mini_miner_total_tx3(pool, {COutPoint{tx3->GetHash(), 0}, COutPoint{tx3->GetHash(), 1}});
BOOST_CHECK(mini_miner_total_tx3.IsReadyToCalculate());
const auto tx3_bump_fee = mini_miner_total_tx3.CalculateTotalBumpFees(very_high_feerate);
BOOST_CHECK(!mini_miner_total_tx3.IsReadyToCalculate());
BOOST_CHECK(tx3_bump_fee.has_value());
BOOST_CHECK_EQUAL(tx3_bump_fee.value(),
very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee));
// Total fees: if spending both tx6 and tx7, don't double-count fees.
node::MiniMiner mini_miner_tx6_tx7(pool, {COutPoint{tx6->GetHash(), 0}, COutPoint{tx7->GetHash(), 0}});
BOOST_CHECK(mini_miner_tx6_tx7.IsReadyToCalculate());
const auto tx6_tx7_bumpfee = mini_miner_tx6_tx7.CalculateTotalBumpFees(very_high_feerate);
BOOST_CHECK(!mini_miner_tx6_tx7.IsReadyToCalculate());
BOOST_CHECK(tx6_tx7_bumpfee.has_value());
BOOST_CHECK_EQUAL(tx6_tx7_bumpfee.value(),
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6] + tx_vsizes[7]) - (high_fee + low_fee + med_fee + high_fee));
}
// Feerate just below tx4: tx6 and tx7 have different bump fees.
{
const auto just_below_tx4 = CFeeRate(tx4_feerate.GetFeePerK() - 5);
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(just_below_tx4);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0});
BOOST_CHECK(tx6_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx6_bumpfee->second, just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second, just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[7]) - (low_fee + high_fee));
// Total fees: if spending both tx6 and tx7, don't double-count fees.
node::MiniMiner mini_miner_tx6_tx7(pool, {COutPoint{tx6->GetHash(), 0}, COutPoint{tx7->GetHash(), 0}});
BOOST_CHECK(mini_miner_tx6_tx7.IsReadyToCalculate());
const auto tx6_tx7_bumpfee = mini_miner_tx6_tx7.CalculateTotalBumpFees(just_below_tx4);
BOOST_CHECK(!mini_miner_tx6_tx7.IsReadyToCalculate());
BOOST_CHECK(tx6_tx7_bumpfee.has_value());
BOOST_CHECK_EQUAL(tx6_tx7_bumpfee.value(), just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee));
}
// Feerate between tx6 and tx7's ancestor feerates: don't need to bump tx5 because tx7 already does.
{
const auto just_above_tx6 = CFeeRate(med_fee + 10, tx_vsizes[6]);
BOOST_CHECK(just_above_tx6 <= CFeeRate(low_fee + high_fee, tx_vsizes[5] + tx_vsizes[7]));
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(just_above_tx6);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0});
BOOST_CHECK(tx6_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx6_bumpfee->second, just_above_tx6.GetFee(tx_vsizes[6]) - (med_fee));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second, 0);
}
// Check linearization order
std::vector<node::MiniMinerMempoolEntry> miniminer_info;
miniminer_info.emplace_back(tx0,/*vsize_self=*/tx_vsizes[0], /*vsize_ancestor=*/tx_vsizes[0], /*fee_self=*/low_fee, /*fee_ancestor=*/low_fee);
miniminer_info.emplace_back(tx1, tx_vsizes[1], tx_vsizes[1], med_fee, med_fee);
miniminer_info.emplace_back(tx2, tx_vsizes[2], tx_vsizes[2], high_fee, high_fee);
miniminer_info.emplace_back(tx3, tx_vsizes[3], tx_vsizes[0]+tx_vsizes[1]+tx_vsizes[2]+tx_vsizes[3], high_fee, low_fee+med_fee+2*high_fee);
miniminer_info.emplace_back(tx4, tx_vsizes[4], tx_vsizes[4], high_fee, high_fee);
miniminer_info.emplace_back(tx5, tx_vsizes[5], tx_vsizes[4]+tx_vsizes[5], low_fee, low_fee + high_fee);
miniminer_info.emplace_back(tx6, tx_vsizes[6], tx_vsizes[4]+tx_vsizes[5]+tx_vsizes[6], med_fee, high_fee+low_fee+med_fee);
miniminer_info.emplace_back(tx7, tx_vsizes[7], tx_vsizes[4]+tx_vsizes[5]+tx_vsizes[7], high_fee, high_fee+low_fee+high_fee);
std::map<Txid, std::set<Txid>> descendant_caches;
descendant_caches.emplace(tx0->GetHash(), std::set<Txid>{tx0->GetHash(), tx3->GetHash()});
descendant_caches.emplace(tx1->GetHash(), std::set<Txid>{tx1->GetHash(), tx3->GetHash()});
descendant_caches.emplace(tx2->GetHash(), std::set<Txid>{tx2->GetHash(), tx3->GetHash()});
descendant_caches.emplace(tx3->GetHash(), std::set<Txid>{tx3->GetHash()});
descendant_caches.emplace(tx4->GetHash(), std::set<Txid>{tx4->GetHash(), tx5->GetHash(), tx6->GetHash(), tx7->GetHash()});
descendant_caches.emplace(tx5->GetHash(), std::set<Txid>{tx5->GetHash(), tx6->GetHash(), tx7->GetHash()});
descendant_caches.emplace(tx6->GetHash(), std::set<Txid>{tx6->GetHash()});
descendant_caches.emplace(tx7->GetHash(), std::set<Txid>{tx7->GetHash()});
node::MiniMiner miniminer_manual(miniminer_info, descendant_caches);
// Use unspent outpoints to avoid entries being omitted.
node::MiniMiner miniminer_pool(pool, all_unspent_outpoints);
BOOST_CHECK(miniminer_manual.IsReadyToCalculate());
BOOST_CHECK(miniminer_pool.IsReadyToCalculate());
for (const auto& sequences : {miniminer_manual.Linearize(), miniminer_pool.Linearize()}) {
// tx2 and tx4 selected first: high feerate with nothing to bump
BOOST_CHECK_EQUAL(Find(sequences, tx4->GetHash()), 0);
BOOST_CHECK_EQUAL(Find(sequences, tx2->GetHash()), 1);
// tx5 + tx7 CPFP
BOOST_CHECK_EQUAL(Find(sequences, tx5->GetHash()), 2);
BOOST_CHECK_EQUAL(Find(sequences, tx7->GetHash()), 2);
// tx0 and tx1 CPFP'd by tx3
BOOST_CHECK_EQUAL(Find(sequences, tx0->GetHash()), 3);
BOOST_CHECK_EQUAL(Find(sequences, tx1->GetHash()), 3);
BOOST_CHECK_EQUAL(Find(sequences, tx3->GetHash()), 3);
// tx6 at medium feerate
BOOST_CHECK_EQUAL(Find(sequences, tx6->GetHash()), 4);
}
}
BOOST_FIXTURE_TEST_CASE(calculate_cluster, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(cs_main, pool.cs);
// TODO this can be removed once the mempool interface uses Txid, Wtxid
auto convert_to_uint256_vec = [](const std::vector<Txid>& vec) -> std::vector<uint256> {
std::vector<uint256> out;
std::transform(vec.begin(), vec.end(), std::back_inserter(out),
[](const Txid& txid) { return txid.ToUint256(); });
return out;
};
// Add chain of size 500
TestMemPoolEntryHelper entry;
std::vector<Txid> chain_txids;
auto& lasttx = m_coinbase_txns[0];
for (auto i{0}; i < 500; ++i) {
const auto tx = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(tx));
chain_txids.push_back(tx->GetHash());
lasttx = tx;
}
const auto cluster_500tx = pool.GatherClusters({lasttx->GetHash()});
CTxMemPool::setEntries cluster_500tx_set{cluster_500tx.begin(), cluster_500tx.end()};
BOOST_CHECK_EQUAL(cluster_500tx.size(), cluster_500tx_set.size());
const auto vec_iters_500 = pool.GetIterVec(convert_to_uint256_vec(chain_txids));
for (const auto& iter : vec_iters_500) BOOST_CHECK(cluster_500tx_set.count(iter));
// GatherClusters stops at 500 transactions.
const auto tx_501 = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(tx_501));
const auto cluster_501 = pool.GatherClusters({tx_501->GetHash()});
BOOST_CHECK_EQUAL(cluster_501.size(), 0);
/* Zig Zag cluster:
* txp0 txp1 txp2 ... txp48 txp49
* \ / \ / \ \ /
* txc0 txc1 txc2 ... txc48
* Note that each transaction's ancestor size is 1 or 3, and each descendant size is 1, 2 or 3.
* However, all of these transactions are in the same cluster. */
std::vector<Txid> zigzag_txids;
for (auto p{0}; p < 50; ++p) {
const auto txp = make_tx({COutPoint{Txid::FromUint256(GetRandHash()), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(CENT).FromTx(txp));
zigzag_txids.push_back(txp->GetHash());
}
for (auto c{0}; c < 49; ++c) {
const auto txc = make_tx({COutPoint{zigzag_txids[c], 1}, COutPoint{zigzag_txids[c+1], 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(txc));
zigzag_txids.push_back(txc->GetHash());
}
const auto vec_iters_zigzag = pool.GetIterVec(convert_to_uint256_vec(zigzag_txids));
// It doesn't matter which tx we calculate cluster for, everybody is in it.
const std::vector<size_t> indices{0, 22, 72, zigzag_txids.size() - 1};
for (const auto index : indices) {
const auto cluster = pool.GatherClusters({zigzag_txids[index]});
BOOST_CHECK_EQUAL(cluster.size(), zigzag_txids.size());
CTxMemPool::setEntries clusterset{cluster.begin(), cluster.end()};
BOOST_CHECK_EQUAL(cluster.size(), clusterset.size());
for (const auto& iter : vec_iters_zigzag) BOOST_CHECK(clusterset.count(iter));
}
}
BOOST_FIXTURE_TEST_CASE(manual_ctor, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(cs_main, pool.cs);
{
// 3 pairs of grandparent + fee-bumping parent, plus 1 low-feerate child.
// 0 fee + high fee
auto grandparent_zero_fee = make_tx({{m_coinbase_txns.at(0)->GetHash(), 0}}, 1);
auto parent_high_feerate = make_tx({{grandparent_zero_fee->GetHash(), 0}}, 1);
// double low fee + med fee
auto grandparent_double_low_feerate = make_tx({{m_coinbase_txns.at(2)->GetHash(), 0}}, 1);
auto parent_med_feerate = make_tx({{grandparent_double_low_feerate->GetHash(), 0}}, 1);
// low fee + double low fee
auto grandparent_low_feerate = make_tx({{m_coinbase_txns.at(1)->GetHash(), 0}}, 1);
auto parent_double_low_feerate = make_tx({{grandparent_low_feerate->GetHash(), 0}}, 1);
// child is below the cpfp package feerates because it is larger than everything else
auto child = make_tx({{parent_high_feerate->GetHash(), 0}, {parent_double_low_feerate->GetHash(), 0}, {parent_med_feerate->GetHash(), 0}}, 1);
// We artificially record each transaction (except the child) with a uniform vsize of 100vB.
const int64_t tx_vsize{100};
const int64_t child_vsize{1000};
std::vector<node::MiniMinerMempoolEntry> miniminer_info;
miniminer_info.emplace_back(grandparent_zero_fee, /*vsize_self=*/tx_vsize,/*vsize_ancestor=*/tx_vsize, /*fee_self=*/0,/*fee_ancestor=*/0);
miniminer_info.emplace_back(parent_high_feerate, tx_vsize, 2*tx_vsize, high_fee, high_fee);
miniminer_info.emplace_back(grandparent_double_low_feerate, tx_vsize, tx_vsize, 2*low_fee, 2*low_fee);
miniminer_info.emplace_back(parent_med_feerate, tx_vsize, 2*tx_vsize, med_fee, 2*low_fee+med_fee);
miniminer_info.emplace_back(grandparent_low_feerate, tx_vsize, tx_vsize, low_fee, low_fee);
miniminer_info.emplace_back(parent_double_low_feerate, tx_vsize, 2*tx_vsize, 2*low_fee, 3*low_fee);
miniminer_info.emplace_back(child, child_vsize, 6*tx_vsize+child_vsize, low_fee, high_fee+med_fee+6*low_fee);
std::map<Txid, std::set<Txid>> descendant_caches;
descendant_caches.emplace(grandparent_zero_fee->GetHash(), std::set<Txid>{grandparent_zero_fee->GetHash(), parent_high_feerate->GetHash(), child->GetHash()});
descendant_caches.emplace(grandparent_low_feerate->GetHash(), std::set<Txid>{grandparent_low_feerate->GetHash(), parent_double_low_feerate->GetHash(), child->GetHash()});
descendant_caches.emplace(grandparent_double_low_feerate->GetHash(), std::set<Txid>{grandparent_double_low_feerate->GetHash(), parent_med_feerate->GetHash(), child->GetHash()});
descendant_caches.emplace(parent_high_feerate->GetHash(), std::set<Txid>{parent_high_feerate->GetHash(), child->GetHash()});
descendant_caches.emplace(parent_med_feerate->GetHash(), std::set<Txid>{parent_med_feerate->GetHash(), child->GetHash()});
descendant_caches.emplace(parent_double_low_feerate->GetHash(), std::set<Txid>{parent_double_low_feerate->GetHash(), child->GetHash()});
descendant_caches.emplace(child->GetHash(), std::set<Txid>{child->GetHash()});
node::MiniMiner miniminer_manual(miniminer_info, descendant_caches);
BOOST_CHECK(miniminer_manual.IsReadyToCalculate());
const auto sequences{miniminer_manual.Linearize()};
// CPFP zero + high
BOOST_CHECK_EQUAL(sequences.at(grandparent_zero_fee->GetHash()), 0);
BOOST_CHECK_EQUAL(sequences.at(parent_high_feerate->GetHash()), 0);
// CPFP double low + med
BOOST_CHECK_EQUAL(sequences.at(grandparent_double_low_feerate->GetHash()), 1);
BOOST_CHECK_EQUAL(sequences.at(parent_med_feerate->GetHash()), 1);
// CPFP low + double low
BOOST_CHECK_EQUAL(sequences.at(grandparent_low_feerate->GetHash()), 2);
BOOST_CHECK_EQUAL(sequences.at(parent_double_low_feerate->GetHash()), 2);
// Child at the end
BOOST_CHECK_EQUAL(sequences.at(child->GetHash()), 3);
}
}
BOOST_AUTO_TEST_SUITE_END()