-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtree.py
executable file
·77 lines (56 loc) · 1.88 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/bin/env python3
import os
from collections import defaultdict
from nltk.parse import CoreNLPParser
from nltk.tree import ParentedTree
import util
UNK = 'UNK'
WORD_MAP_FILENAME = 'models/word_map.pickle'
def parse(text):
parser = CoreNLPParser("http://localhost:9000")
result = parser.raw_parse(text.lower())
trees = [tree for tree in result]
for tree in trees:
tree.chomsky_normal_form()
tree.collapse_unary(collapseRoot=True, collapsePOS=True)
trees = [ParentedTree.convert(tree) for tree in trees]
return trees
def isleaf(tree):
return isinstance(tree, ParentedTree) and tree.height() == 2
def traverse(tree, f=print, args=None, leaves=False):
if leaves:
if isleaf(tree):
f(tree, args)
return
else:
f(tree, args)
if isleaf(tree):
return
for child in tree:
traverse(child, f, args)
def build_word_map():
print("Building word map...")
with open("trees/train.txt", "r") as f:
trees = [ParentedTree.fromstring(line.lower()) for line in f]
print("Counting words...")
words = defaultdict(int)
for tree in trees:
for token in tree.leaves():
words[token] += 1
word_map = dict(zip(words.keys(), range(len(words))))
word_map[UNK] = len(words) # Add unknown as word
util.save_to_file(word_map, WORD_MAP_FILENAME)
return word_map
def load_word_map():
if not os.path.isfile(WORD_MAP_FILENAME):
return build_word_map()
print("Loading word map...")
return util.load_from_file(WORD_MAP_FILENAME)
def load_trees(dataset='train'):
filename = "trees/{}.txt".format(dataset)
with open(filename, 'r') as f:
print("Reading '{}'...".format(filename))
trees = [ParentedTree.fromstring(line.lower()) for line in f]
return trees
if __name__ == '__main__':
word_map = load_word_map()