-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsgd.py
executable file
·79 lines (62 loc) · 2.56 KB
/
sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/bin/env python3
import random
import time
import numpy as np
class SGD:
def __init__(self, model, learning_rate=1e-2, batch_size=30, optimizer='adagrad'):
self.model = model
assert self.model is not None, "Please provide a model to optimize!"
self.iter = 0
self.learning_rate = learning_rate
self.batch_size = batch_size
self.optimizer = optimizer.lower()
if self.optimizer == 'sgd':
print("Using sgd..")
elif self.optimizer == 'adagrad':
print("Using adagrad...")
epsilon = 1e-8
self.grads = [epsilon + np.zeros(W.shape) for W in self.model.stack]
else:
raise ValueError("Invalid optimizer")
# initialize a variable to store all the costs
self.costs = []
self.expcosts = []
def optimize(self, trees, log_interval=1):
m = len(trees)
# Randomly shuffle data
random.shuffle(trees)
it = 0
for i in range(0, 1 + m - self.batch_size, self.batch_size):
it += 1
self.iter += 1
data = trees[i: i+self.batch_size]
cost, grad = self.model.cost_and_grad(data)
self.costs.append(cost)
# compute exponentially weighted cost
if np.isfinite(cost):
if self.iter > 1:
self.expcosts.append(0.01*cost + 0.99*self.expcosts[-1])
else:
self.expcosts.append(cost)
# Perform one step of parameter update
if self.optimizer == 'sgd':
scale = -self.learning_rate
update = grad
elif self.optimizer == 'adagrad':
# trace = trace+grad.^2
self.grads[1:] = [gt+g**2 for gt,g in zip(self.grads[1:], grad[1:])]
# update = grad.*trace.^(-1/2)
update = [g*(1./np.sqrt(gt)) for gt,g in zip(self.grads[1:], grad[1:])]
# handle dictionary separately
dL = grad[0]
dLt = self.grads[0]
for j in dL.keys():
dLt[:,j] = dLt[:,j] + dL[j]**2
dL[j] = dL[j] * (1./np.sqrt(dLt[:,j]))
update = [dL] + update
scale = -self.learning_rate
self.model.update_params(scale=scale, update=update)
# Log status
if self.iter % log_interval == 0:
print("\r Iter = {} ({}), Cost = {:.4f}, Expected = {:.4f}".format(
it, self.iter, cost, self.expcosts[-1]), end=' ')