Skip to content

Latest commit

 

History

History
65 lines (53 loc) · 3.57 KB

README.md

File metadata and controls

65 lines (53 loc) · 3.57 KB

YoloV5 Raspberry Pi 4

output image

YoloV5 with the ncnn framework.

License

Paper: https://towardsdatascience.com/yolo-v5-is-here-b668ce2a4908

Special made for a bare Raspberry Pi 4, see Q-engineering deep learning examples


Benchmark.

Model size objects mAP Jetson Nano 2015 MHz RPi 4 64-OS 1950 MHz
NanoDet 320x320 80 20.6 28.2 FPS 13.0 FPS
YoloFastestV2 352x352 80 24.1 38.4 FPS 18.8 FPS
YoloV2 416x416 20 19.2 10.1 FPS 3.0 FPS
YoloV3 352x352 tiny 20 16.6 17.7 FPS 4.4 FPS
YoloV4 416x416 tiny 80 21.7 11.2 FPS 3.4 FPS
YoloV4 608x608 full 80 45.3 0.7 FPS 0.2 FPS
YoloV5 640x640 small 80 22.5 4.0 FPS 1.6 FPS
YoloX 416x416 nano 80 25.8 17.6 FPS 7.0 FPS
YoloX 416x416 tiny 80 32.8 8.3 FPS 2.8 FPS
YoloX 640x640 small 80 40.5 2.6 FPS 0.9 FPS

Dependencies.

To run the application, you have to:

  • A raspberry Pi 4 with a 32 or 64-bit operating system. It can be the Raspberry 64-bit OS, or Ubuntu 18.04 / 20.04. Install 64-bit OS
  • The Tencent ncnn framework installed. Install ncnn
  • OpenCV 64 bit installed. Install OpenCV 4.5
  • Code::Blocks installed. ($ sudo apt-get install codeblocks)

Installing the app.

To extract and run the network in Code::Blocks
$ mkdir MyDir
$ cd MyDir
$ wget https://github.com/Qengineering/YoloV5-ncnn-Raspberry-Pi-4/archive/refs/heads/main.zip
$ unzip -j master.zip
Remove master.zip, LICENSE and README.md as they are no longer needed.
$ rm master.zip
$ rm LICENSE
$ rm README.md

Your MyDir folder must now look like this:
parking.jpg
busstop.jpg
YoloV5.cpb
yoloV5.cpp
yolov5s.bin
yolov5s.param


Running the app.

To run the application load the project file YoloV5.cbp in Code::Blocks. More info or
if you want to connect a camera to the app, follow the instructions at Hands-On.

Many thanks to nihui again!

output image


paypal