forked from dingo-actual/dropgrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvit_model.py
210 lines (181 loc) · 5.49 KB
/
vit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
class PatchEmbedding(nn.Module):
def __init__(self, img_size, patch_size, in_channels, embed_dim):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.n_patches = (img_size // patch_size) ** 2
self.proj = nn.Conv2d(
in_channels,
embed_dim,
kernel_size=patch_size,
stride=patch_size
)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2)
x = x.transpose(1, 2)
return x
class Attention(nn.Module):
def __init__(self, dim, n_heads=12, qkv_bias=True, attn_p=0., proj_p=0.):
super().__init__()
self.n_heads = n_heads
self.dim = dim
self.head_dim = dim // n_heads
self.scale = self.head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_p)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_p)
def forward(self, x):
n_samples, n_tokens, dim = x.shape
if dim != self.dim:
raise ValueError
qkv = self.qkv(x)
qkv = qkv.reshape(n_samples, n_tokens, 3, self.n_heads, self.head_dim)
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
k_t = k.transpose(-2, -1)
dp = (q @ k_t) * self.scale
attn = dp.softmax(dim=-1)
attn = self.attn_drop(attn)
weighted_avg = attn @ v
weighted_avg = weighted_avg.transpose(1, 2)
weighted_avg = weighted_avg.flatten(2)
x = self.proj(weighted_avg)
x = self.proj_drop(x)
return x
class MLP(nn.Module):
def __init__(self, in_features, hidden_features, out_features, p=0.):
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = nn.GELU()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(p)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, n_heads, mlp_ratio=4.0, qkv_bias=True, p=0., attn_p=0.):
super().__init__()
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
self.attn = Attention(
dim,
n_heads=n_heads,
qkv_bias=qkv_bias,
attn_p=attn_p,
proj_p=p
)
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
hidden_features = int(dim * mlp_ratio)
self.mlp = MLP(
in_features=dim,
hidden_features=hidden_features,
out_features=dim,
)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class VisionTransformer(nn.Module):
def __init__(
self,
img_size=384,
patch_size=16,
in_channels=3,
n_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=True,
p=0.,
attn_p=0.,
dropout_rate=0.,
):
super().__init__()
self.patch_embed = PatchEmbedding(
img_size=img_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=embed_dim,
)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, 1 + self.patch_embed.n_patches, embed_dim)
)
self.pos_drop = nn.Dropout(p=dropout_rate)
self.dropout = nn.Dropout(p=dropout_rate)
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
n_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
p=p,
attn_p=attn_p,
)
for _ in range(depth)
]
)
self.norm = nn.LayerNorm(embed_dim, eps=1e-6)
self.head = nn.Linear(embed_dim, n_classes)
def forward(self, x):
n_samples = x.shape[0]
x = self.patch_embed(x)
cls_token = self.cls_token.expand(
n_samples, -1, -1
)
x = torch.cat((cls_token, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for block in self.blocks:
x = block(x)
x = self.norm(x)
x = self.dropout(x)
cls_token_final = x[:, 0]
x = self.head(cls_token_final)
return x
def vit_base_patch16_224(n_classes, dropout_rate=0., patch_size=16, embed_dim=768, depth=12, num_heads=12):
return VisionTransformer(
img_size=224,
patch_size=patch_size,
embed_dim=embed_dim,
depth=depth,
num_heads=num_heads,
qkv_bias=True,
p=0.,
attn_p=0.,
n_classes=n_classes,
dropout_rate=dropout_rate,
)
def vit_large_patch16_224(n_classes):
return VisionTransformer(
img_size=224,
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
qkv_bias=True,
p=0.,
attn_p=0.,
n_classes=n_classes,
)
def vit_huge_patch14_224(n_classes):
return VisionTransformer(
img_size=224,
patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
qkv_bias=True,
p=0.,
attn_p=0.,
n_classes=n_classes,
)