Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

scenario trees/lattice #23

Open
msz13 opened this issue Aug 18, 2024 · 2 comments
Open

scenario trees/lattice #23

msz13 opened this issue Aug 18, 2024 · 2 comments
Labels

Comments

@msz13
Copy link
Owner

msz13 commented Aug 18, 2024

Scenario trees/lattice reading

Scenarios for multistage stochastic programs
https://www.karlin.mff.cuni.cz/~kopa/papers/vanc-ed.pdf

Overview of scenario tree generation methods, applied in financial and economic decision making
https://www.semanticscholar.org/paper/Overview-of-scenario-tree-generation-methods%2C-in-V%C3%A1zsonyi/70242b4d448621b2e2b7b4833a7d912dbd4c5a65

Problem-Driven Scenario Clustering in Stochastic Optimization
https://arxiv.org/pdf/2106.11717.pdf

Scenario tree generation approaches using K-means and LP moment matching methods
https://www.sciencedirect.com/science/article/pii/S0377042712002300

StochOptim
https://github.com/julienkeutchayan/StochOptim/tree/master

Multistage K-Means Clustering for Scenario Tree Construction
https://informatica.vu.lt/journal/INFORMATICA/article/579/info

Dynamic Tree Generation
https://www-user.tu-chemnitz.de/~alopi/publications/DynamicTreeGen.pdf

Problem driven scenaro tree generation
https://www.mdpi.com/1999-4893/16/10/479

Scenario sampling
https://www.researchgate.net/publication/317845601_Comparison_of_Sampling_Methods_for_Dynamic_Stochastic_Programming

Finite-State Markov-Chain Approximations: A Hidden Markov Approach
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4137592
Inna wersja
https://congress-files.s3.amazonaws.com/2022-07/SSRN_20220615.pdf

The Discretization Filter: A Simple Way to Estimate Nonlinear State Space Models
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2780166

Importence Sampling
https://www.researchgate.net/publication/276162840_Importance_Sampling_in_Stochastic_Programming_A_Markov_Chain_Monte_Carlo_Approach

Simulation and optimization approaches to scenario tree generation
https://www.sciencedirect.com/science/article/abs/pii/S0165188903001131

New Algorithms And Fast Implementations To Approximate Stochastic Processes
https://www.researchgate.net/publication/346578092_New_Algorithms_And_Fast_Implementations_To_Approximate_Stochastic_Processes

Aggregation and Discretization in Multistage Stochastic Programming
https://edoc.hu-berlin.de/bitstream/handle/18452/8999/18.pdf?sequence=1

Performance comparison of scenario generation methods applied to a stochastic optimization asset-liability_management_model
https://www.researchgate.net/publication/324522700_Performance_comparison_of_scenario-generation_methods_applied_to_a_stochastic_optimization_asset-liability_management_model

Optimisation of Stochastic Programming by Hidden Markov Modelling based Scenario Generation
https://www.researchgate.net/publication/46461932_Optimisation_of_Stochastic_Programming_by_Hidden_Markov_Modelling_based_Scenario_Generation

A Parsimonious Model for Generating Arbitrage-Free Scenario Trees
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2362014

Scenario tree modelling for multistage stochastic programs
https://www.wias-berlin.de/people/heitsch/HR05svjour.pdf

Adaptive lattice methods for multi-asset models
https://core.ac.uk/download/pdf/82640129.pdf

Experimental Study of Methods of Scenario Lattice Construction for Stochastic Dual Dynamic Programming - Scenario Lattice
https://www.scirp.org/journal/paperinformation?paperid=110139

Gas Storage Valuation in Incomplete Markets - single variable, lattice discretisation
https://www.researchgate.net/publication/341743003_Gas_Storage_Valuation_in_Incomplete_Markets

Discretizing Nonlinear, Non-Gaussian Markov Processes with Exact Conditional Moments
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2585859

Discretization of the Markov Regime Switching AR(1) Process
http://www.liuyanecon.com/wp-content/uploads/MRS-Discretization.pdf

Foreign exchange trading and management with the stochastic dual dynamic programming method (transform AR(1) to gbm)
https://jfin-swufe.springeropen.com/articles/10.1186/s40854-022-00433-7

Evaluation of Scenario-Generation Methods for Stochastic Programming
https://www.researchgate.net/publication/2837745_Evaluation_of_Scenario-Generation_Methods_for_Stochastic_Programming

Scenario Reduction in Stochastic Programming: An Approach Using Probability Metrics
https://www.researchgate.net/publication/243784656_Scenario_Reduction_in_Stochastic_Programming_An_Approach_Using_Probability_Metrics

Problem driven articles
https://github.com/julienkeutchayan/StochOptim

Problem-driven scenario generation: an analytical approach for stochastic programs with tail risk measure
https://www.researchgate.net/publication/337553023_Problem-driven_scenario_generation_an_analytical_approach_for_stochastic_programs_with_tail_risk_measure
Discretization

Performance comparison of scenario-generation methods applied to a stochastic optimization asset-liability management model
https://www.researchgate.net/publication/324522700_Performance_comparison_of_scenario-generation_methods_applied_to_a_stochastic_optimization_asset-liability_management_model

https://alexisakira.github.io/discretization/

The Discretization Filter: A Simple Way to Estimate Nonlinear State Space Models
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2780166

Discretizing Nonlinear, Non-Gaussian Markov Processes with Exact Conditional Moments
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2585859

A new method for approximating vector autoregressive processes by finite-state Markov chains
https://www.researchgate.net/publication/241765539_A_new_method_for_approximating_vector_autoregressive_processes_by_finite-state_Markov_chains

@msz13 msz13 added the reading label Aug 18, 2024
@msz13
Copy link
Owner Author

msz13 commented Aug 18, 2024

TODO:

  1. Tylko kemans
  • symulacja dla całego okresu
  • obliczenie klastrów i prawdopodobieńst dla jednego okresu - dane zdenormalizowane
  • obliczenie klastrów i prawdopodobieńst dla wszystkich okresow
  • zapisanie scenario lattice
  • momenty poszczegolnych klas aktywow i okresów
  1. Kmeans z moments
  • oblicz momenty dla scenariuszy należących do początkowego klastra
  • oblicz prawdopodobienstwa, do momentow i kmeans
  • cala funkcja dla wzystkich i okresow
  • porownaj wartosc funkcji obiejtywnej dla róznych ilości nodes
  1. NA później
  • wczytaj model(parametry) - z pliku

@msz13
Copy link
Owner Author

msz13 commented Aug 18, 2024

scenario: calculate probs for scenarios
given clusters [1 1 2 3 3 2 2 1] statege one
and  second stage clusters [2 1 3 2 3 3 1 1 ]
when calculate probs
than probs per node
| node 1 | node 2 | prob |
| 1 |  1 | 2/3 |
| 1 | 2 | 1/3 |
| 2 |  1 | 1/3 |
| 2 | 3 | 2/3 |
| 3 |  2 | 1/2 |
| 3 |  3 | 1/2 | 

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant