diff --git a/notebooks/cv_gradient_boosting_tree.livemd b/notebooks/cv_gradient_boosting_tree.livemd index b029cc73..26e413eb 100644 --- a/notebooks/cv_gradient_boosting_tree.livemd +++ b/notebooks/cv_gradient_boosting_tree.livemd @@ -3,14 +3,13 @@ ```elixir Mix.install([ {:scholar, "~> 0.2.0"}, - {:explorer, "~> 0.6.1"}, - {:exla, "~> 0.6.0"}, - {:nx, "~> 0.6.0", override: true}, {:exgboost, "~> 0.3"}, {:req, "~> 0.3.9"}, {:kino_vega_lite, "~> 0.1.9"}, {:kino, "~> 0.10.0"}, - {:kino_explorer, "~> 0.1.7"} + {:kino_explorer, "~> 0.1.7"}, + {:nx, "~> 0.7.2"}, + {:explorer, "~> 0.8.2"} ]) ``` @@ -23,13 +22,6 @@ require Explorer.DataFrame, as: DF require Explorer.Series, as: S ``` -And let's configure `EXLA` as our default backend (where our tensors are stored) and compiler (which compiles Scholar code) across the notebook and all branched sections: - -```elixir -Nx.global_default_backend(EXLA.Backend) -Nx.Defn.global_default_options(compiler: EXLA) -``` - We are going to work with [Medical Cost Personal Datasets](https://www.kaggle.com/datasets/mirichoi0218/insurance) to predict medical charges that were applied to each person from the dataset. Let's download it: ```elixir