From 09c5ac6e69c961d337623bb44f3deee91c9d7f7f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andr=C3=A9s=20Alejos?= Date: Sat, 8 Jun 2024 05:14:48 -0400 Subject: [PATCH] Update EXGBoost version in notebook (#279) --- notebooks/cv_gradient_boosting_tree.livemd | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/notebooks/cv_gradient_boosting_tree.livemd b/notebooks/cv_gradient_boosting_tree.livemd index 26e413eb..5e6c41ce 100644 --- a/notebooks/cv_gradient_boosting_tree.livemd +++ b/notebooks/cv_gradient_boosting_tree.livemd @@ -3,7 +3,7 @@ ```elixir Mix.install([ {:scholar, "~> 0.2.0"}, - {:exgboost, "~> 0.3"}, + {:exgboost, "~> 0.5"}, {:req, "~> 0.3.9"}, {:kino_vega_lite, "~> 0.1.9"}, {:kino, "~> 0.10.0"}, @@ -22,6 +22,13 @@ require Explorer.DataFrame, as: DF require Explorer.Series, as: S ``` +And let's configure `EXLA` as our default backend (where our tensors are stored) and compiler (which compiles Scholar code) across the notebook and all branched sections: + +```elixir +Nx.global_default_backend(EXLA.Backend) +Nx.Defn.global_default_options(compiler: EXLA) +``` + We are going to work with [Medical Cost Personal Datasets](https://www.kaggle.com/datasets/mirichoi0218/insurance) to predict medical charges that were applied to each person from the dataset. Let's download it: ```elixir