-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathQL_12.asv
164 lines (130 loc) · 7.04 KB
/
QL_12.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
% Gradient Q Learning implementation for electricity market bidding
% clc
clear
% rng('default');
%% Initilizing variables
init_env_params
%% Setting things up
qnext_sa=zeros(NBlocks,1);
q_sa=zeros(NBlocks,1);
actions=zeros(NEpisodes,NBlocks);
td_error = zeros(NEpisodes,1);
oracle_actions=zeros(NEpisodes,NBlocks);
actions_la=zeros(NEpisodes,NBlocks);
% agent_params.alpha=agent_params.alpha*1.1;
% agent_params.epsilon=agent_params.epsilon*1.1;
bat_storage=zeros(NEpisodes,NBlocks);
bat_storage_o=zeros(NEpisodes,NBlocks);
bat_storage_op=zeros(NEpisodes,NBlocks);
bat_storage_la=zeros(NEpisodes,NBlocks);
num_charge_cycles = 0;
num_charge_cycles_o = 0;
num_charge_cycles_op = 0;
num_charge_cycles_la = 0;
performance_measures_agent = struct('reward',zeros(NEpisodes,NBlocks),'wastage',zeros(NEpisodes,NBlocks),'bat_charge_cost',zeros(NEpisodes,NBlocks),'cost',zeros(NEpisodes,NBlocks));
performance_measures_oracle = performance_measures_agent;
performance_measures_oracle2 = performance_measures_agent;
performance_measures_agent_la = performance_measures_agent;
test_idx = ceil(rand()*NDays)+30;
test_cost = [];
test_reward = [];
test_cost_la = [];
for k=1:NEpisodes
% agent_params.alpha=agent_params.alpha/1.005;
% agent_params.epsilon=agent_params.epsilon/1.005;
% bat_eff = max(bat_eff_final,bat_eff_init - (bat_eff_init-bat_eff_final)*num_charge_cycles/bat_eff_lifetime);
% bat_eff_o = max(bat_eff_final,bat_eff_init - (bat_eff_init-bat_eff_final)*num_charge_cycles_o/bat_eff_lifetime);
% bat_eff_op = max(bat_eff_final,bat_eff_init - (bat_eff_init-bat_eff_final)*num_charge_cycles_op/bat_eff_lifetime);
% bat_eff_la = max(bat_eff_final,bat_eff_init - (bat_eff_init-bat_eff_final)*num_charge_cycles_la/bat_eff_lifetime);
bat_eff = bat_eff_init;
bat_eff_o = bat_eff_init;
bat_eff_op = bat_eff_init;
bat_eff_la = bat_eff_init;
i=ceil(rand()*NDays)+30; % Leaving the first 30 days out of the sample experience
bat_soc_init = bat_charge_min + rand()*(bat_cap-bat_charge_min);
%% Agent sim
actions(k,:) = agent_sim(i,bat_soc_init,env_params,agent_params,energy_data);
actions_la(k,:) = agent_sim2(i,bat_soc_init,env_params,agent_params,energy_data,tetha);
%% Oracle sim
bid_q_o = oracle_sim(i,bat_soc_init,'actual',env_params,energy_data);
oracle_actions(k,:) = bid_q_o;
%% Oracle sim
bid_q_op = oracle_sim(i,bat_soc_init,'predicted',env_params,energy_data);
%% Actual energy usage for agent
[performance,bat_storage(k,:)] = evaluate_actions(i,bat_soc_init,bat_eff,env_params,energy_data,actions(k,:));
performance_measures_agent.reward(k,:) = performance.reward;
performance_measures_agent.wastage(k,:) = performance.wastage;
performance_measures_agent.bat_charge_cost(k,:) = performance.bat_charge_cost;
performance_measures_agent.cost(k,:) = performance.actual_cost;
num_charge_cycles = num_charge_cycles + performance.charge_cycles;
%% Train Agent
state = [demand_norm_a(i,:); solar_norm_a(i,:); bat_storage(k,:)/bat_cap; acp_a(i,:)/max_acp; (1:NBlocks)/NBlocks; actions(k,:)/max_bid_q]';
[~,qnext_sa(1:end-1)] = greedy_nn(state(2:end,1:end-1),agent_params.target_weights,env_params);
reward = performance_measures_agent.reward(k,:)';
q_sa = ann_pred(state,agent_params.weights);
agent_params = ann_train(state,agent_params,reward,q_sa,qnext_sa,gamma);
td_error(k) = sum(abs(reward + gamma*qnext_sa - q_sa),1);
if rem(k,update_freq) == 0
agent_params.target_weights = agent_params.weights;
end
%% Actual energy usage for linear agent
[performance,bat_storage_la(k,:)] = evaluate_actions(i,bat_soc_init,bat_eff_la,env_params,energy_data,actions_la(k,:));
performance_measures_agent_la.reward(k,:) = performance.reward2;
performance_measures_agent_la.wastage(k,:) = performance.wastage;
performance_measures_agent_la.bat_charge_cost(k,:) = performance.bat_charge_cost;
performance_measures_agent_la.cost(k,:) = performance.actual_cost;
num_charge_cycles_la = num_charge_cycles_la + performance.charge_cycles;
%% Train Linear Agent
reward = performance_measures_agent_la.reward(k,:)';
for j = 1:NBlocks
if j~=NBlocks
[~,qnext_sa(j)] = greedy(demand_norm_a(i,j+1),solar_norm_a(i,j+1),bat_storage_la(k,j+1)/bat_cap,min_bid_q,max_bid_q, acp_a(i,j+1)/max_acp, (j+1)/NBlocks,tetha);
end
present_state = basisExpansion(demand_norm_a(i,j), solar_norm_a(i,j), bat_storage_la(k,j)/bat_cap, actions_la(k,j)/max_bid_q, acp_a(i,j)/max_acp, j/NBlocks);
q_sa(j)=valuefn(present_state,tetha);
tetha = tetha + alpha*(reward(j) + gamma*qnext_sa(j) - q_sa(j))*present_state';
end
%% If there was no battery
netdemand = (demand_a(i,:)-solar_a(i,:));
idx = find(acp_a(i,:)<grid_rate);
cost_without_battery(k,idx) = netdemand(idx).*acp_a(i,idx);
idx = find(acp_a(i,:)>=grid_rate);
cost_without_battery(k,idx) = netdemand(idx).*grid_rate;
% cost_without_battery(k,:) = netdemand*grid_rate;
%% Actual energy usage for oracle
[performance,bat_storage_o(k,:)] = evaluate_actions(i,bat_soc_init,bat_eff_o,env_params,energy_data,bid_q_o);
performance_measures_oracle.reward(k,:) = performance.reward;
performance_measures_oracle.wastage(k,:) = performance.wastage;
performance_measures_oracle.bat_charge_cost(k,:) = performance.bat_charge_cost;
performance_measures_oracle.cost(k,:) = performance.actual_cost;
num_charge_cycles_o = num_charge_cycles_o + performance.charge_cycles;
%% Actual energy usage for oracle 2
[performance,bat_storage_op(k,:)] = evaluate_actions(i,bat_soc_init,bat_eff_op,env_params,energy_data,bid_q_op);
performance_measures_oracle2.reward(k,:) = performance.reward;
performance_measures_oracle2.wastage(k,:) = performance.wastage;
performance_measures_oracle2.bat_charge_cost(k,:) = performance.bat_charge_cost;
performance_measures_oracle2.cost(k,:) = performance.actual_cost;
num_charge_cycles_op = num_charge_cycles_op + performance.charge_cycles;
if rem(k,100) == 0
test_actions = agent_sim(test_idx,bat_soc_init,env_params,agent_params,energy_data);
[performance,~] = evaluate_actions(test_idx,bat_soc_init,bat_eff,env_params,energy_data,test_actions);
test_cost = [test_cost; sum(performance.actual_cost,2)];
test_reward = [test_reward; sum(performance.reward,2)];
test_actions = agent_sim2(test_idx,bat_soc_init,env_params,agent_params,energy_data,tetha);
[performance,~] = evaluate_actions(test_idx,bat_soc_init,bat_eff,env_params,energy_data,test_actions);
test_cost_la = [test_cost_la; sum(performance.actual_cost,2)];
end
end
%% Plotting Performance Curves
plot_performance_curves
figure()
plot(td_error);
figure()
plot(test_cost);
hold on;
plot(test_cost_la);
legend('nn','linear')
figure()
plot(test_reward);
Error = mean(mean((cost_without_battery-performance_measures_agent.cost),1))
Error = mean(mean((cost_without_battery-performance_measures_agent_la.cost),1))