forked from dog-qiuqiu/Yolo-FastestV2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
executable file
·76 lines (59 loc) · 2.53 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import cv2
import time
import argparse
import torch
import model.detector
import utils.utils
if __name__ == '__main__':
#指定训练配置文件
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='',
help='Specify training profile *.data')
parser.add_argument('--weights', type=str, default='',
help='The path of the .pth model to be transformed')
parser.add_argument('--img', type=str, default='',
help='The path of test image')
opt = parser.parse_args()
cfg = utils.utils.load_datafile(opt.data)
assert os.path.exists(opt.weights), "请指定正确的模型路径"
assert os.path.exists(opt.img), "请指定正确的测试图像路径"
#模型加载
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.detector.Detector(cfg["classes"], cfg["anchor_num"], True).to(device)
model.load_state_dict(torch.load(opt.weights, map_location=device))
#sets the module in eval node
model.eval()
#数据预处理
ori_img = cv2.imread(opt.img)
res_img = cv2.resize(ori_img, (cfg["width"], cfg["height"]), interpolation = cv2.INTER_LINEAR)
img = res_img.reshape(1, cfg["height"], cfg["width"], 3)
img = torch.from_numpy(img.transpose(0,3, 1, 2))
img = img.to(device).float() / 255.0
#模型推理
start = time.perf_counter()
preds = model(img)
end = time.perf_counter()
time = (end - start) * 1000.
print("forward time:%fms"%time)
#特征图后处理
output = utils.utils.handel_preds(preds, cfg, device)
output_boxes = utils.utils.non_max_suppression(output, conf_thres = 0.3, iou_thres = 0.4)
#加载label names
LABEL_NAMES = []
with open(cfg["names"], 'r') as f:
for line in f.readlines():
LABEL_NAMES.append(line.strip())
h, w, _ = ori_img.shape
scale_h, scale_w = h / cfg["height"], w / cfg["width"]
#绘制预测框
for box in output_boxes[0]:
box = box.tolist()
obj_score = box[4]
category = LABEL_NAMES[int(box[5])]
x1, y1 = int(box[0] * scale_w), int(box[1] * scale_h)
x2, y2 = int(box[2] * scale_w), int(box[3] * scale_h)
cv2.rectangle(ori_img, (x1, y1), (x2, y2), (255, 255, 0), 2)
cv2.putText(ori_img, '%.2f' % obj_score, (x1, y1 - 5), 0, 0.7, (0, 255, 0), 2)
cv2.putText(ori_img, category, (x1, y1 - 25), 0, 0.7, (0, 255, 0), 2)
cv2.imwrite("test_result.png", ori_img)