This the official repository for uniGradICON
: A Foundation Model for Medical Image Registration
uniGradICON
is based on GradICON but trained on several different datasets (see details below).
The result is a deep-learning-based registration model that works well across datasets. More results can be found here.
Please (currently) cite as:
@misc{tian2024unigradicon,
title={uniGradICON: A Foundation Model for Medical Image Registration},
author={Lin Tian and Hastings Greer and Roland Kwitt and Francois-Xavier Vialard and Raul San Jose Estepar and Sylvain Bouix and Richard Rushmore and Marc Niethammer},
year={2024},
eprint={2403.05780},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
uniGradICON
has currently been trained and tested on the following datasets.
Training data:
Dataset | Anatomical region | # of patients | # per patient | # of pairs | Type | Modality | |
1. | COPDGene | Lung | 899 | 2 | 899 | Intra-pat. | CT |
2. | OAI | Knee | 2532 | 1 | 3,205,512 | Inter-pat. | MRI |
3. | HCP | Brain | 1076 | 1 | 578,888 | Inter-pat. | MRI |
4. | L2R-Abdomen | Abdomen | 30 | 1 | 450 | Inter-pat. | CT |
Testing data:
Dataset | Anatomical region | # of patients | # per patient | # of pairs | Type | Modality | |
5. | Dirlab-COPDGene | Lung | 10 | 2 | 10 | Intra-pat. | CT |
6. | OAI-test | Knee | 301 | 1 | 301 | Inter-pat. | MRI |
7. | HCP-test | Brain | 32 | 1 | 100 | Inter-pat. | MRI |
8. | L2R-NLST-val | Lung | 10 | 2 | 10 | Intra-pat. | CT |
9. | L2R-OASIS-val | Brain | 20 | 1 | 19 | Inter-pat. | MRI |
10. | IXI-test | Brain | 115 | 1 | 115 | Atlas-pat. | MRI |
11. | L2R-CBCT-val | Lung | 3 | 3 | 6 | Intra-pat. | CT/CBCT |
12. | L2R-CTMR-val | Abdomen | 3 | 2 | 3 | Intra-pat. | CT/MRI |
13. | L2R-CBCT-train | Lung | 3 | 11 | 22 | Intra-pat. | CT/CBCT |
Our goal is to continuously improve the uniGradICON
model, e.g., by training on more datasets with additional diversity. Feel free to point us to datasets that should be included or let us know if you want to help with future developments.
To use:
python3 -m venv unigradicon_virtualenv
source unigradicon_virtualenv/bin/activate
pip install unigradicon
wget https://www.hgreer.com/assets/slicer_mirror/RegLib_C01_1.nrrd
wget https://www.hgreer.com/assets/slicer_mirror/RegLib_C01_2.nrrd
unigradicon-register --fixed=RegLib_C01_2.nrrd --fixed_modality=mri --moving=RegLib_C01_1.nrrd --moving_modality=mri --transform_out=trans.hdf5 --warped_moving_out=warped_C01_1.nrrd
We also provide a colab demo.
UniGradICON
is set up to work with Itk images and transforms. So you can easily read and write images and display resulting transformations for example in 3D Slicer.