forked from ECCE-EIC/macros
-
Notifications
You must be signed in to change notification settings - Fork 0
/
G4_HcalOut_ref.C
271 lines (225 loc) · 9.26 KB
/
G4_HcalOut_ref.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#ifndef MACRO_G4HCALOUTREF_C
#define MACRO_G4HCALOUTREF_C
#include <GlobalVariables.C>
#include <QA.C>
#include <g4calo/HcalRawTowerBuilder.h>
#include <g4calo/RawTowerDigitizer.h>
#include <g4detectors/PHG4HcalCellReco.h>
#include <g4detectors/PHG4OuterHcalSubsystem.h>
#include <g4eval/CaloEvaluator.h>
#include <g4main/PHG4Reco.h>
#include <eiccaloreco/RawClusterBuilderkV3.h>
#include <eiccaloreco/RawClusterBuilderHelper.h>
#include <caloreco/RawClusterBuilderGraph.h>
#include <caloreco/RawClusterBuilderTemplate.h>
#include <caloreco/RawTowerCalibration.h>
#include <qa_modules/QAG4SimulationCalorimeter.h>
#include <fun4all/Fun4AllServer.h>
R__LOAD_LIBRARY(libcalo_reco.so)
R__LOAD_LIBRARY(libg4calo.so)
R__LOAD_LIBRARY(libg4detectors.so)
R__LOAD_LIBRARY(libg4eval.so)
R__LOAD_LIBRARY(libqa_modules.so)
namespace Enable
{
bool HCALOUT = false;
bool HCALOUT_ABSORBER = false;
bool HCALOUT_OVERLAPCHECK = false;
bool HCALOUT_CELL = false;
bool HCALOUT_TOWER = false;
bool HCALOUT_CLUSTER = false;
bool HCALOUT_EVAL = false;
bool HCALOUT_QA = false;
int HCALOUT_VERBOSITY = 0;
} // namespace Enable
namespace G4HCALOUT
{
double outer_radius = 264.71;
double size_z = 304.91 * 2;
// Digitization (default photon digi):
RawTowerDigitizer::enu_digi_algorithm TowerDigi = RawTowerDigitizer::kSimple_photon_digitization;
// directly pass the energy of sim tower to digitized tower
// kNo_digitization
// simple digitization with photon statistics, single amplitude ADC conversion and pedestal
// kSimple_photon_digitization
// digitization with photon statistics on SiPM with an effective pixel N, ADC conversion and pedestal
// kSiPM_photon_digitization
enum enu_HCalOut_clusterizer
{
kHCalOutGraphClusterizer,
kHCalOutTemplateClusterizer
};
//! template clusterizer, RawClusterBuilderTemplate, as developed by Sasha Bazilevsky
enu_HCalOut_clusterizer HCalOut_clusterizer = kHCalOutTemplateClusterizer;
//! graph clusterizer, RawClusterBuilderGraph
//enu_HCalOut_clusterizer HCalOut_clusterizer = kHCalOutGraphClusterizer;
} // namespace G4HCALOUT
// Init is called by G4Setup.C
void HCalOuterInit()
{
BlackHoleGeometry::max_radius = std::max(BlackHoleGeometry::max_radius, G4HCALOUT::outer_radius);
BlackHoleGeometry::max_z = std::max(BlackHoleGeometry::max_z, G4HCALOUT::size_z / 2.);
BlackHoleGeometry::min_z = std::min(BlackHoleGeometry::min_z, -G4HCALOUT::size_z / 2.);
}
double HCalOuter(PHG4Reco *g4Reco,
double radius,
const int crossings)
{
bool AbsorberActive = Enable::ABSORBER || Enable::HCALOUT_ABSORBER;
bool OverlapCheck = Enable::OVERLAPCHECK || Enable::HCALOUT_OVERLAPCHECK;
int verbosity = std::max(Enable::VERBOSITY, Enable::HCALOUT_VERBOSITY);
PHG4OuterHcalSubsystem *hcal = new PHG4OuterHcalSubsystem("HCALOUT");
// hcal->set_double_param("inner_radius", 183.3);
//-----------------------------------------
// the light correction can be set in a single call
// hcal->set_double_param("light_balance_inner_corr", NAN);
// hcal->set_double_param("light_balance_inner_radius", NAN);
// hcal->set_double_param("light_balance_outer_corr", NAN);
// hcal->set_double_param("light_balance_outer_radius", NAN);
// hcal->set_double_param("magnet_cutout_radius", 195.31);
// hcal->set_double_param("magnet_cutout_scinti_radius", 195.96);
// hcal->SetLightCorrection(NAN,NAN,NAN,NAN);
//-----------------------------------------
// hcal->set_double_param("outer_radius", G4HCALOUT::outer_radius);
// hcal->set_double_param("place_x", 0.);
// hcal->set_double_param("place_y", 0.);
// hcal->set_double_param("place_z", 0.);
// hcal->set_double_param("rot_x", 0.);
// hcal->set_double_param("rot_y", 0.);
// hcal->set_double_param("rot_z", 0.);
// hcal->set_double_param("scinti_eta_coverage", 1.1);
// hcal->set_double_param("scinti_gap", 0.85);
// hcal->set_double_param("scinti_gap_neighbor", 0.1);
// hcal->set_double_param("scinti_inner_radius",183.89);
// hcal->set_double_param("scinti_outer_radius",263.27);
// hcal->set_double_param("scinti_tile_thickness", 0.7);
// hcal->set_double_param("size_z", G4HCALOUT::size_z);
// hcal->set_double_param("steplimits", NAN);
// hcal->set_double_param("tilt_angle", -11.23);
// hcal->set_int_param("light_scint_model", 1);
// hcal->set_int_param("magnet_cutout_first_scinti", 8);
// hcal->set_int_param("ncross", 0);
// hcal->set_int_param("n_towers", 64);
// hcal->set_int_param("n_scinti_plates_per_tower", 5);
// hcal->set_int_param("n_scinti_tiles", 12);
// hcal->set_string_param("material", "Steel_1006");
hcal->SetActive();
hcal->SuperDetector("HCALOUT");
if (AbsorberActive)
{
hcal->SetAbsorberActive();
}
hcal->OverlapCheck(OverlapCheck);
g4Reco->registerSubsystem(hcal);
radius = hcal->get_double_param("outer_radius");
radius += no_overlapp;
return radius;
}
void HCALOuter_Cells()
{
int verbosity = std::max(Enable::VERBOSITY, Enable::HCALOUT_VERBOSITY);
Fun4AllServer *se = Fun4AllServer::instance();
PHG4HcalCellReco *hc = new PHG4HcalCellReco("HCALOUT_CELLRECO");
hc->Detector("HCALOUT");
// hc->Verbosity(2);
// check for energy conservation - needs modified "infinite" timing cuts
// 0-999999999
// hc->checkenergy();
// timing cuts with their default settings
// hc->set_double_param("tmin",0.);
// hc->set_double_param("tmax",60.0);
// or all at once:
// hc->set_timing_window(0.0,60.0);
se->registerSubsystem(hc);
return;
}
void HCALOuter_Towers()
{
int verbosity = std::max(Enable::VERBOSITY, Enable::HCALOUT_VERBOSITY);
Fun4AllServer *se = Fun4AllServer::instance();
HcalRawTowerBuilder *TowerBuilder = new HcalRawTowerBuilder("HcalOutRawTowerBuilder");
TowerBuilder->Detector("HCALOUT");
TowerBuilder->set_sim_tower_node_prefix("SIM");
TowerBuilder->Verbosity(verbosity);
se->registerSubsystem(TowerBuilder);
// From 2016 Test beam sim
RawTowerDigitizer *TowerDigitizer = new RawTowerDigitizer("HcalOutRawTowerDigitizer");
TowerDigitizer->Detector("HCALOUT");
// TowerDigitizer->set_raw_tower_node_prefix("RAW_LG");
TowerDigitizer->set_digi_algorithm(G4HCALOUT::TowerDigi);
TowerDigitizer->set_pedstal_central_ADC(0);
TowerDigitizer->set_pedstal_width_ADC(1); // From Jin's guess. No EMCal High Gain data yet! TODO: update
TowerDigitizer->set_photonelec_ADC(16. / 5.);
TowerDigitizer->set_photonelec_yield_visible_GeV(16. / 5 / (0.2e-3));
TowerDigitizer->set_zero_suppression_ADC(-0); // no-zero suppression
se->registerSubsystem(TowerDigitizer);
const double visible_sample_fraction_HCALOUT = 3.38021e-02; // /gpfs/mnt/gpfs04/sphenix/user/jinhuang/prod_analysis/hadron_shower_res_nightly/./G4Hits_sPHENIX_pi-_eta0_16GeV.root_qa.rootQA_Draw_HCALOUT_G4Hit.pdf
RawTowerCalibration *TowerCalibration = new RawTowerCalibration("HcalOutRawTowerCalibration");
TowerCalibration->Detector("HCALOUT");
// TowerCalibration->set_raw_tower_node_prefix("RAW_LG");
// TowerCalibration->set_calib_tower_node_prefix("CALIB_LG");
TowerCalibration->set_calib_algorithm(RawTowerCalibration::kSimple_linear_calibration);
if (G4HCALOUT::TowerDigi == RawTowerDigitizer::kNo_digitization)
{
TowerCalibration->set_calib_const_GeV_ADC(1. / visible_sample_fraction_HCALOUT);
}
else
{
TowerCalibration->set_calib_const_GeV_ADC(0.2e-3 / visible_sample_fraction_HCALOUT);
}
TowerCalibration->set_pedstal_ADC(0);
se->registerSubsystem(TowerCalibration);
return;
}
void HCALOuter_Clusters()
{
int verbosity = std::max(Enable::VERBOSITY, Enable::HCALOUT_VERBOSITY);
Fun4AllServer *se = Fun4AllServer::instance();
if (G4HCALOUT::HCalOut_clusterizer == G4HCALOUT::kHCalOutTemplateClusterizer)
{
RawClusterBuilderHelper *ClusterBuilder = new RawClusterBuilderkV3("HcalOuRawClusterBuilderkV3");
ClusterBuilder->Detector("HCALOUT");
ClusterBuilder->set_seed_e(0.5);
ClusterBuilder->set_agg_e(0.1);
se->registerSubsystem(ClusterBuilder);
/*
RawClusterBuilderTemplate *ClusterBuilder = new RawClusterBuilderTemplate("HcalOutRawClusterBuilderTemplate");
ClusterBuilder->Detector("HCALOUT");
ClusterBuilder->SetCylindricalGeometry(); // has to be called after Detector()
ClusterBuilder->Verbosity(verbosity);
se->registerSubsystem(ClusterBuilder);
*/
}
else if (G4HCALOUT::HCalOut_clusterizer == G4HCALOUT::kHCalOutGraphClusterizer)
{
RawClusterBuilderGraph *ClusterBuilder = new RawClusterBuilderGraph("HcalOutRawClusterBuilderGraph");
ClusterBuilder->Detector("HCALOUT");
ClusterBuilder->Verbosity(verbosity);
se->registerSubsystem(ClusterBuilder);
}
else
{
cout << "HCALOuter_Clusters - unknown clusterizer setting!" << endl;
exit(1);
}
return;
}
void HCALOuter_Eval(const std::string &outputfile)
{
int verbosity = std::max(Enable::VERBOSITY, Enable::HCALOUT_VERBOSITY);
Fun4AllServer *se = Fun4AllServer::instance();
CaloEvaluator *eval = new CaloEvaluator("HCALOUTEVALUATOR", "HCALOUT", outputfile);
eval->Verbosity(verbosity);
se->registerSubsystem(eval);
return;
}
void HCALOuter_QA()
{
int verbosity = std::max(Enable::QA_VERBOSITY, Enable::HCALOUT_VERBOSITY);
Fun4AllServer *se = Fun4AllServer::instance();
QAG4SimulationCalorimeter *qa = new QAG4SimulationCalorimeter("HCALOUT");
qa->Verbosity(verbosity);
se->registerSubsystem(qa);
return;
}
#endif