Skip to content

Commit

Permalink
podcast script generation component (#15)
Browse files Browse the repository at this point in the history
* Add devcontainer and requirements

* Add pyproject.toml

* Add data_loaders and tests

* Add data_cleaners and tests

* Update demo

* Add `LOADERS` and `CLEANERS`

* Add markdown and docx

* Add API Reference

* Update tests

* Update install

* Add initial scripts

* More tests

* fix merge

* Add podcast writing to demo/app

* Add missing deps

* Add text_to_podcast module

* Expose model options and prompt tuning in the app

* pre-commit

* Strip system_prompt

* Rename to inference module. Add docstrings

* pre-commit

* Add CURATED_REPOS

* JSON prompt

* Update API docs

* Fix format

* Make text cutoff based on `model.n_ctx()`. Consider ~4 characters per token as a resonable default.

* Add inference tests

* Drop __init__ imports

* Fix outdated arg

* Drop redundant JSON output in prompt

* Update default stop
  • Loading branch information
daavoo authored Nov 25, 2024
1 parent b6b332d commit 3fc7ff1
Show file tree
Hide file tree
Showing 12 changed files with 263 additions and 10 deletions.
5 changes: 2 additions & 3 deletions .github/.devcontainer.json
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,7 @@
"features": {
"ghcr.io/devcontainers/features/python": {
"version": "latest"
},
"packages": ["libgl1-mesa-dev"]
}
},
"postCreateCommand": "pip install -e '.[demo]'"
"postCreateCommand": "pip install -e . --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu"
}
63 changes: 61 additions & 2 deletions demo/app.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,32 @@
from pathlib import Path

import streamlit as st
from huggingface_hub import list_repo_files

from opennotebookllm.preprocessing import DATA_LOADERS, DATA_CLEANERS
from opennotebookllm.inference.model_loaders import load_llama_cpp_model
from opennotebookllm.inference.text_to_text import text_to_text_stream

PODCAST_PROMPT = """
You are a helpful podcast writer.
You will take the input text and generate a conversation between 2 speakers.
Example of response:
{
"Speaker 1": "Welcome to our podcast, where we explore the latest advancements in AI and technology. I'm your host, and today we're going to dive into the exciting world of TrustWorthy AI.",
"Speaker 2": "Hi, I'm excited to be here, so what is TrustWorthy AI?",
"Speaker 1":"Ah, great question! It is a term used by the European High Level Expert Group on AI. Mozilla defines trustworthy AI as AI that is demonstrably worthy of trust, tech that considers accountability, agency, and individual and collective well-being."
}
"""

CURATED_REPOS = [
"allenai/OLMoE-1B-7B-0924-Instruct-GGUF",
"MaziyarPanahi/SmolLM2-1.7B-Instruct-GGUF",
# system prompt seems to be ignored for this model.
# "microsoft/Phi-3-mini-4k-instruct-gguf",
"HuggingFaceTB/SmolLM2-360M-Instruct-GGUF",
"Qwen/Qwen2.5-1.5B-Instruct-GGUF",
"Qwen/Qwen2.5-3B-Instruct-GGUF",
]

uploaded_file = st.file_uploader(
"Choose a file", type=["pdf", "html", "txt", "docx", "md"]
Expand All @@ -17,9 +40,45 @@
raw_text = DATA_LOADERS[extension](uploaded_file)
with col1:
st.title("Raw Text")
st.write(raw_text[:200])
st.text_area(f"Total Length: {len(raw_text)}", f"{raw_text[:500]} . . .")

clean_text = DATA_CLEANERS[extension](raw_text)
with col2:
st.title("Cleaned Text")
st.write(clean_text[:200])
st.text_area(f"Total Length: {len(clean_text)}", f"{clean_text[:500]} . . .")

repo_name = st.selectbox("Select Repo", CURATED_REPOS)
model_name = st.selectbox(
"Select Model",
[
x
for x in list_repo_files(repo_name)
if ".gguf" in x.lower() and ("q8" in x.lower() or "fp16" in x.lower())
],
index=None,
)
if model_name:
with st.spinner("Downloading and Loading Model..."):
model = load_llama_cpp_model(model_id=f"{repo_name}/{model_name}")

# ~4 characters per token is considered a reasonable default.
max_characters = model.n_ctx() * 4
if len(clean_text) > max_characters:
st.warning(
f"Input text is too big ({len(clean_text)})."
f" Using only a subset of it ({max_characters})."
)
clean_text = clean_text[:max_characters]

system_prompt = st.text_area("Podcast generation prompt", value=PODCAST_PROMPT)

if st.button("Generate Podcast Script"):
with st.spinner("Generating Podcast Script..."):
text = ""
for chunk in text_to_text_stream(
clean_text, model, system_prompt=system_prompt.strip()
):
text += chunk
if text.endswith("\n"):
st.write(text)
text = ""
4 changes: 4 additions & 0 deletions docs/api.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
# API Reference

::: opennotebookllm.preprocessing.data_cleaners

::: opennotebookllm.inference.model_loaders

::: opennotebookllm.inference.text_to_text
9 changes: 4 additions & 5 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,12 @@ requires-python = ">=3.10"
dynamic = ["version"]
dependencies = [
"beautifulsoup4",
"huggingface-hub",
"llama-cpp-python",
"loguru",
"PyPDF2[crypto]",
"python-docx"
"python-docx",
"streamlit",
]

[project.optional-dependencies]
Expand All @@ -27,10 +30,6 @@ tests = [
"pytest-sugar>=0.9.6",
]

demo = [
"streamlit"
]

[project.urls]
Documentation = "https://mozilla-ai.github.io/OpenNotebookLLM/"
Issues = "https://github.com/mozilla-ai/OpenNotebookLLM/issues"
Expand Down
Empty file.
28 changes: 28 additions & 0 deletions src/opennotebookllm/inference/model_loaders.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
from llama_cpp import Llama


def load_llama_cpp_model(
model_id: str,
) -> Llama:
"""
Loads the given model_id using Llama.from_pretrained.
Examples:
>>> model = load_model(
"allenai/OLMoE-1B-7B-0924-Instruct-GGUF/olmoe-1b-7b-0924-instruct-q8_0.gguf")
Args:
model_id (str): The model id to load.
Format is expected to be `{org}/{repo}/{filename}`.
Returns:
Llama: The loaded model.
"""
org, repo, filename = model_id.split("/")
model = Llama.from_pretrained(
repo_id=f"{org}/{repo}",
filename=filename,
# 0 means that the model limit will be used, instead of the default (512) or other hardcoded value
n_ctx=0,
)
return model
84 changes: 84 additions & 0 deletions src/opennotebookllm/inference/text_to_text.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
from typing import Iterator

from llama_cpp import Llama


def chat_completion(
input_text: str,
model: Llama,
system_prompt: str,
return_json: bool,
stream: bool,
stop: str | list[str] | None = None,
) -> str | Iterator[str]:
# create_chat_completion uses an empty list as default
stop = stop or []
return model.create_chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": input_text},
],
response_format={
"type": "json_object",
}
if return_json
else None,
stream=stream,
stop=stop,
)


def text_to_text(
input_text: str,
model: Llama,
system_prompt: str,
return_json: bool = True,
stop: str | list[str] | None = None,
) -> str:
"""
Transforms input_text using the given model and system prompt.
Args:
input_text (str): The text to be transformed.
model (Llama): The model to use for conversion.
system_prompt (str): The system prompt to use for conversion.
return_json (bool, optional): Whether to return the response as JSON.
Defaults to True.
stop (str | list[str] | None, optional): The stop token(s).
Returns:
str: The full transformed text.
"""
response = chat_completion(
input_text, model, system_prompt, return_json, stop=stop, stream=False
)
return response["choices"][0]["message"]["content"]


def text_to_text_stream(
input_text: str,
model: Llama,
system_prompt: str,
return_json: bool = True,
stop: str | list[str] | None = None,
) -> Iterator[str]:
"""
Transforms input_text using the given model and system prompt.
Args:
input_text (str): The text to be transformed.
model (Llama): The model to use for conversion.
system_prompt (str): The system prompt to use for conversion.
return_json (bool, optional): Whether to return the response as JSON.
Defaults to True.
stop (str | list[str] | None, optional): The stop token(s).
Yields:
str: Chunks of the transformed text as they are available.
"""
response = chat_completion(
input_text, model, system_prompt, return_json, stop=stop, stream=True
)
for item in response:
if item["choices"][0].get("delta", {}).get("content", None):
yield item["choices"][0].get("delta", {}).get("content", None)
File renamed without changes.
68 changes: 68 additions & 0 deletions tests/integration/test_model_load_and_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import json
from typing import Iterator

import pytest

from opennotebookllm.inference.model_loaders import load_llama_cpp_model
from opennotebookllm.inference.text_to_text import text_to_text, text_to_text_stream


def test_model_load_and_inference_text_to_text():
model = load_llama_cpp_model(
"HuggingFaceTB/smollm-135M-instruct-v0.2-Q8_0-GGUF/smollm-135m-instruct-add-basics-q8_0.gguf"
)
result = text_to_text(
"What is the capital of France?",
model=model,
system_prompt="",
)
assert isinstance(result, str)
assert json.loads(result)["Capital"] == "Paris"


def test_model_load_and_inference_text_to_text_no_json():
model = load_llama_cpp_model(
"HuggingFaceTB/smollm-135M-instruct-v0.2-Q8_0-GGUF/smollm-135m-instruct-add-basics-q8_0.gguf"
)
result = text_to_text(
"What is the capital of France?",
model=model,
system_prompt="",
return_json=False,
stop=".",
)
assert isinstance(result, str)
with pytest.raises(json.JSONDecodeError):
json.loads(result)
assert result.startswith("The capital of France is Paris")


def test_model_load_and_inference_text_to_text_stream():
model = load_llama_cpp_model(
"HuggingFaceTB/smollm-135M-instruct-v0.2-Q8_0-GGUF/smollm-135m-instruct-add-basics-q8_0.gguf"
)
result = text_to_text_stream(
"What is the capital of France?",
model=model,
system_prompt="",
)
assert isinstance(result, Iterator)
assert json.loads("".join(result))["Capital"] == "Paris"


def test_model_load_and_inference_text_to_text_stream_no_json():
model = load_llama_cpp_model(
"HuggingFaceTB/smollm-135M-instruct-v0.2-Q8_0-GGUF/smollm-135m-instruct-add-basics-q8_0.gguf"
)
result = text_to_text_stream(
"What is the capital of France?",
model=model,
system_prompt="",
return_json=False,
stop=".",
)
assert isinstance(result, Iterator)
result = "".join(result)
with pytest.raises(json.JSONDecodeError):
json.loads(result)
assert result.startswith("The capital of France is Paris")
12 changes: 12 additions & 0 deletions tests/unit/inference/test_model_loaders.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
from llama_cpp import Llama

from opennotebookllm.inference.model_loaders import load_llama_cpp_model


def test_load_llama_cpp_model():
model = load_llama_cpp_model(
"HuggingFaceTB/smollm-135M-instruct-v0.2-Q8_0-GGUF/smollm-135m-instruct-add-basics-q8_0.gguf"
)
assert isinstance(model, Llama)
# we set n_ctx=0 to indicate that we want to use the model's default context
assert model.n_ctx() == 2048
File renamed without changes.
File renamed without changes.

0 comments on commit 3fc7ff1

Please sign in to comment.