The special prize winner in the kaggle HPA competition
Python 2.7 (should work fine with 3.x) CUDA 9.0 cuddn 7.0.5 nvidia drivers v.384
The solution is using the OpenVINO by intel. please install it before attempting to do inference
apt-get install -y --no-install-recommends \
build-essential \
cpio \
curl \
git \
lsb-release \
pciutils \
python3.5 \
python3-pip \
python3-dev \
python3-setuptools \
sudo
pip3 install tensorflow numpy pandas networkx tqdm
git clone https://github.com/opconty/keras-shufflenetV2.git
DATA SETUP (assumes the Kaggle API is installed)
mkdir -p data/
cd data
kaggle competitions download -c human-protein-atlas-image-classificatin
mkdir test
mkdir train
cd test && unzip ../test.zip
#get external data
wget https://storage.googleapis.com/kaggle-forum-message-attachments/430860/10774/HPAv18RGBY_WithoutUncertain_wodpl.csv
python download_hpa.py
python conv_512.py
python train train/shufflenet_test_enhanced.py
git clone https://github.com/amir-abdi/keras_to_tensorflow
python3 keras_to_tensorflow/keras_to_tensorflow.py --input_model model.model --output_model frozen_model.pb
# converting to openvino
python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py --input_model frozen_model.pb --input_shape [1,512,512,3] --data_type FP32
(paper)ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design