diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index dc2e3f55cd..b45021dd8c 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -77,17 +77,6 @@ repos: hooks: - id: docformatter args: [--in-place, --wrap-summaries=80, --wrap-descriptions=80] -- repo: https://github.com/PyCQA/pydocstyle - hooks: - - id: pydocstyle - name: pydocstyle - entry: pydocstyle - language: python - types: [python] - exclude: (.ci|.github) - additional_dependencies: - - toml - rev: 6.1.1 - repo: https://github.com/adrienverge/yamllint.git rev: v1.28.0 hooks: diff --git a/llmfoundry/command_utils/data_prep/convert_dataset_json.py b/llmfoundry/command_utils/data_prep/convert_dataset_json.py index 9f174d1aaf..35d7e637e6 100644 --- a/llmfoundry/command_utils/data_prep/convert_dataset_json.py +++ b/llmfoundry/command_utils/data_prep/convert_dataset_json.py @@ -34,7 +34,7 @@ def build_hf_dataset( """Build an IterableDataset over the HF C4 or pile source data. Args: - dataset_name (str): Dataset name + path (str): Dataset name split (str): Split name. mode (ConcatMode): NO_CONCAT, or CONCAT_TOKENS max_length (int): The length of concatenated tokens diff --git a/llmfoundry/command_utils/data_prep/convert_delta_to_json.py b/llmfoundry/command_utils/data_prep/convert_delta_to_json.py index b76e457e2c..635efd54d4 100644 --- a/llmfoundry/command_utils/data_prep/convert_delta_to_json.py +++ b/llmfoundry/command_utils/data_prep/convert_delta_to_json.py @@ -78,15 +78,16 @@ def to_cf(self: 'SparkConnectClient', return the schema and drops all other responses. Args: - plan (pb2.Plan): The plan object to be executed by spark. - type (str): The output format of the result, supported formats are 'json', 'csv', and 'arrow'. + self (SparkConnectClient): The SparkConnectClient we are processing. + plan (pb2.Plan): The plan object to be executed by spark. + type (str): The output format of the result, supported formats are 'json', 'csv', and 'arrow'. Returns: - Tuple[List[Result], int, bool]: A tuple containing: - - A list of Result namedtuples, each containing a URL, row count, compressed size, - and uncompressed size of the part of the result. - - Total row count of all parts of the result. - - A boolean indicating whether the result has been truncated. + Tuple[List[Result], int, bool]: A tuple containing: + - A list of Result namedtuples, each containing a URL, row count, compressed size, + and uncompressed size of the part of the result. + - Total row count of all parts of the result. + - A boolean indicating whether the result has been truncated. """ req = self._execute_plan_request_with_metadata() req.plan.CopyFrom(plan) @@ -120,8 +121,9 @@ def to_cf(self: 'SparkConnectClient', ) # Create the iterator - from pyspark.sql.connect.client.reattach import \ - ExecutePlanResponseReattachableIterator + from pyspark.sql.connect.client.reattach import ( + ExecutePlanResponseReattachableIterator, + ) iterator = ExecutePlanResponseReattachableIterator( req, self._stub, @@ -169,6 +171,7 @@ def collect_as_cf(self: 'DataFrame', uses the `to_cf` method to execute the plan and fetch results as presigned URLs. Args: + self (pd.DataFrame): The dataframe we are processing. type (str): The output format of the result, supported formats are 'json', 'csv', and 'arrow'. Returns: @@ -693,8 +696,9 @@ def _check_imports(): import pyspark.sql.connect.proto.cloud_pb2 as cloud_pb2 from pyspark.sql import SparkSession from pyspark.sql.connect.client.core import SparkConnectClient - from pyspark.sql.connect.client.reattach import \ - ExecutePlanResponseReattachableIterator + from pyspark.sql.connect.client.reattach import ( + ExecutePlanResponseReattachableIterator, + ) from pyspark.sql.connect.dataframe import DataFrame from pyspark.sql.dataframe import DataFrame as SparkDataFrame from pyspark.sql.types import Row diff --git a/llmfoundry/data/finetuning/dataloader.py b/llmfoundry/data/finetuning/dataloader.py index 11104ac706..d9450bc657 100644 --- a/llmfoundry/data/finetuning/dataloader.py +++ b/llmfoundry/data/finetuning/dataloader.py @@ -64,9 +64,12 @@ def build_finetuning_dataloader( on which you intend to use, as explained below. Args: - name (str): The type of dataloader to build. Must = "finetuning". - --- - *** HuggingFace dataset config fields *** + tokenizer (transformers.PreTrainedTokenizer): The tokenizer used to + prepare the data from raw text. Any missing sentinel tokens will + be added by the collator. + device_batch_size (int, float): The size of the batches (number of examples) + that the dataloader will produce. + dataset (Dict[str, Any]): A HuggingFace dataset config which contains the following fields: dataset.hf_name (str, optional): The name of the HuggingFace dataset to use. Can also be a remote http(s) directory or object store bucket containing the file {split}.jsonl in the format (prompt, response), @@ -130,16 +133,32 @@ def build_finetuning_dataloader( The script `scripts/misc/profile_packing.py` can help you choose the best packing_ratio. dataset.shuffle (bool): Whether to shuffle the dataset. - ___ See :class:`StreamingFinetuningDataset` for info on other standard config options within `dataset` that will be passed as kwargs if using the streaming codepath. - --- - tokenizer (transformers.PreTrainedTokenizer): The tokenizer used to - prepare the data from raw text. Any missing sentinel tokens will - be added by the collator. - device_batch_size (int, float): The size of the batches (number of examples) - that the dataloader will produce. + num_workers (int, optional): How many subprocesses to use for data loading. + 0 means that the data will be loaded in the main process. The default is 0. + This argument is passed directly to the pytorch :class:`DataLoader`. + drop_last (bool, optional): If true, drop the last incomplete batch, if the dataset + size is not divisible by the batch size. If False and the size of dataset is + not divisible by the batch size, then the last batch will be smaller. The + default is False. This argument is passed directly to the pytorch :class:`DataLoader`. + pin_memory (bool, optional): If True, the data loader will copy Tensors into device/CUDA + pinned memory before returning them. If your data elements are a custom type, or your + `collate_fn` returns a batch that is a custom type. This argument is passed directly to + the pytorch :class:`DataLoader`. + prefetch_factor (int, optional): Number of batches loaded in advance by each worker. + 2 means there will be a total of 2 * num_workers batches prefetched across all workers. + (default value depends on the set value for num_workers. If value of num_workers=0 default + is None. Otherwise, if value of num_workers > 0 default is 2). This argument is passed + directly to the pytorch :class:`DataLoader`. + persistent_workers (bool, optional): If True, the data loader will not shut down the worker + processes after a dataset has been consumed once. This allows to maintain the workers + Dataset instances alive. The default is False. This argument is passed directly to the + pytorch :class:`DataLoader`. + timeout (int, optional): If positive, the timeout value for collecting a batch from workers. + Should always be non-negative. The default is 0. This argument is passed directly to the + pytorch :class:`DataLoader`. See :class:`DataLoader` for standard argument options to the pytorch dataloader, such as `drop_last`, `num_workers`, etc. @@ -357,7 +376,50 @@ def _validate_config( the other. Args: - dataset_cfg (DictConfig): The dataset configuration to be validated. + max_seq_len (int): The maximum length of sequences + in the batch. See :class:`Seq2SeqFinetuningCollator` docstring + for details. + decoder_only_format (bool): Whether to format the + examples for a decoder-only model. See :class:`Seq2SeqFinetuningCollator` + docstring for details. + hf_name (str, optional): The name of the HuggingFace dataset + to use. Can also be a remote http(s) directory or object store bucket + containing the file {split}.jsonl in the format (prompt, response), + in which case the builder will create a HuggingFace dataset. + local (str, optional): Local path where remote data + will be streamed to. Only valid if `cfg.dataset.remote` has + also been set. + remote (str, optional): Location of a MDS-formatted + streaming dataset to use. Setting this will tell the builder + to create a streaming dataset rather than a HuggingFace dataset. + hf_kwargs (DictConfig, optional): Additional kwargs to + pass to `datasets.load_dataset`, which can be used to load + a dataset from local files. + preprocessing_fn (str, optional): The name/import path of + the preprocessing function to use for formatting the data examples. + If ``None`` (default), the builder will use the preprocessing function + registered under `hf_name` (see `tasks.py`), if one exists, + otherwise it will skip preprocessing. + If `preprocessing_fn` corresponds to a registered preprocessing + function in `tasks.py`, the builder will use that. + Otherwise, it will interpret `preprocessing_fn` as a + "import.path:function_name" import path; e.g., it will call + `from import.path import function_name` and use the imported + function as the preprocessing function. + safe_load (bool, optional): Whether to enforce safe loading of the dataset. + If `None`, will default to not applying any safe loading. + streams (Dict[str, Any], optional): A dictionary with multiple data streams. + If `None`, will assume no streams. + target_prompts (str): Which prompts are used as training targets. + Defaults to "none", meaning prompts are never used as training targets. + See :class:`Seq2SeqFinetuningCollator` docstring for details. + target_responses (str): Which responses are used as training targets. + Defaults to "last", meaning only the final response in multi-turn examples + will serve as training targets. See :class:`Seq2SeqFinetuningCollator` docstring for + details. + kwargs (DictConfig, optional): Additional kwargs to + pass to `datasets.load_dataset`, which can be used to load + a dataset from local files. Raises: ValueError: If the dataset configuration does not meet the requirements. @@ -504,7 +566,7 @@ def _download_remote_hf_dataset(remote_path: str, split: str) -> str: completed, the function removes the signal file. Args: - hf_name (str): The path of the HuggingFace dataset to download. + remote_path (str): The path of the HuggingFace dataset to download. split (str): The dataset split to download (e.g., 'train', 'validation', 'test'). Returns: diff --git a/llmfoundry/data/finetuning/tasks.py b/llmfoundry/data/finetuning/tasks.py index 78bfb9c74c..397b619e73 100644 --- a/llmfoundry/data/finetuning/tasks.py +++ b/llmfoundry/data/finetuning/tasks.py @@ -162,7 +162,7 @@ def _is_empty_or_nonexistent(dirpath: str) -> bool: Args: dirpath (str): Directory path to check. - Returns + Returns: True if directory is empty or non-existent. False otherwise. """ return not os.path.isdir(dirpath) or len(os.listdir(dirpath)) == 0 @@ -820,9 +820,33 @@ def build_from_hf( Note: This function will drop examples where the prompt is longer than the max_seq_len Args: - cfg (DictConfig): The dataset configuration. - max_seq_len (int): The maximum sequence length. Examples with prompts longer than this will be dropped. - tokenizer (Tokenizer): The tokenizer to be used for tokenizing the dataset. + dataset_name (str): The name of the HuggingFace dataset + to use. Can also be a remote http(s) directory or object store bucket + containing the file {split}.jsonl in the format (prompt, response), + in which case the builder will create a HuggingFace dataset. + split (str): The split of the HuggingFace dataset. + safe_load (bool, optional): Whether to enforce safe loading of the dataset. + If `None`, will default to not applying any safe loading. + max_seq_len (int): The maximum length of sequences + in the batch. See :class:`Seq2SeqFinetuningCollator` docstring + for details. + preprocessing_fn (Callable, optional): The preprocessing function to use for + formatting the data examples. + tokenizer (PreTrainedTokenizerBase): The tokenizer to be used for tokenizing + the HuggingFace dataset. + target_prompts (str): Which prompts are used as training targets. + Defaults to "none", meaning prompts are never used as training targets. + See :class:`Seq2SeqFinetuningCollator` docstring for details. + target_responses (str): Which responses are used as training targets. + Defaults to "last", meaning only the final response in multi-turn examples + will serve as training targets. See :class:`Seq2SeqFinetuningCollator` docstring for + details. + decoder_only_format (bool): Whether to format the + examples for a decoder-only model. See :class:`Seq2SeqFinetuningCollator` + docstring for details. + hf_kwargs (DictConfig, optional): Additional kwargs to + pass to `datasets.load_dataset`, which can be used to load + a dataset from local files. Returns: Dataset: The tokenized dataset. diff --git a/llmfoundry/data/packing.py b/llmfoundry/data/packing.py index a6fdf34953..5579066f89 100644 --- a/llmfoundry/data/packing.py +++ b/llmfoundry/data/packing.py @@ -337,7 +337,7 @@ def auto_packing_ratio( dataloader_cfg (DictConfig): The dataloader configuration for profiling. tokenizer (PreTrainedTokenizerBase): The tokenizer for profiling. device_batch_size (int): The size of the batches (number of examples) per device. - num_packing_ratio (int): The number of packing ratios to try. + num_packing_ratios (int): The number of packing ratios to try. Returns: A packing ratio that minimizes padding while maintaining zero waste. diff --git a/llmfoundry/eval/datasets/in_context_learning_evaluation.py b/llmfoundry/eval/datasets/in_context_learning_evaluation.py index 8a8b9de551..4e49be3fba 100644 --- a/llmfoundry/eval/datasets/in_context_learning_evaluation.py +++ b/llmfoundry/eval/datasets/in_context_learning_evaluation.py @@ -251,8 +251,9 @@ def read_dataset( """ from datasets import \ Dataset as HFDataset # pyright: ignore[reportGeneralTypeIssues] - from datasets import \ - load_dataset # pyright: ignore[reportGeneralTypeIssues] + from datasets import ( # pyright: ignore[reportGeneralTypeIssues] + load_dataset, + ) if 'hf://' in dataset_uri: dataset_uri = dataset_uri.replace('hf://', '') if hf_loading_vars is None: @@ -363,6 +364,7 @@ def get_answer_from_example( Args: example (Dict): The example from which to retrieve the answer + in_context (bool): Whether this is an in-context example. Default to False. Returns: str: The answer in the example @@ -712,6 +714,7 @@ def get_answer_from_example( Args: example (Dict): The example from which to retrieve the answer + in_context (bool): Whether this is an in-context example. Default to False. Returns: str: The answer in from the example with chain of thought and delimiter if needed @@ -731,7 +734,7 @@ def tokenize_example( Args: prompt_and_fewshot (str): The collection of the prompt and fewshot examples that belongs before the example's context - ctx (str): The specific example's derived context + ctxt (str): The specific example's derived context example (Dict): The example as a dictionary. Returns: @@ -1035,6 +1038,7 @@ def get_answer_from_example( Args: example (Dict): The example from which to retrieve the answer + in_context (bool): Whether this is an in-context example. Default to False. Returns: str: The full string of the correct answer based on the 'gold' key @@ -1053,7 +1057,7 @@ def tokenize_example( Args: prompt_and_fewshot (str): The collection of the prompt and fewshot examples that belongs before the example's context - ctx (str): The specific example's derived context + ctxt (str): The specific example's derived context example (Dict): The example as a dictionary. Returns: @@ -1129,6 +1133,7 @@ def collate_fn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: since the batch may consist of multiple questions, the choice_groupings indicates which contiguous sequences of elements in the batch correspond to which question gold_indices indicates which of the [0, N-1] choices is the correct one for each question. + Args: data (List): List of tokenized datapoints (dicts returned by self._tokenize_example) @@ -1168,6 +1173,7 @@ def split_batch(self, batch: Any, and real example, which refers to one possible continuation. As example count and microbatch_size are tracked in logical example, we split logical attributes by microbatch_size and real attributes by microbatch_size * num_choices. + Args: batch (Dict): Batch of data microbatch_size (int | float): Size of microbatches @@ -1419,7 +1425,7 @@ def tokenize_example( Args: prompt_and_fewshot (str): The collection of the prompt and fewshot examples that belongs before the example's context - ctx (str): The specific example's derived context + context_options (str): A list of contexts for this specific example. example (Dict): The example as a dictionary. Returns: @@ -1548,6 +1554,10 @@ def partition_dataset_by_category( Args: dataset_uri (str): Location of dataset. destination_path (str): Base destination path, we will write a separate partition off this URI for each category. + hf_loading_vars (Dict): A dictionary containing keyword arguments to be passed into `load_dataset` if dataset is being pulled from HF. + hf_parsing_map (Dict): A dictionary containing a mapping from HF columns to ICL dataset keys. The dictionary should be formatted {icl_key:[hf_key1, hf_key1]}. + Column contents will be concatenated with ' ' separating them. If not included, will load the columns already present in the HF dataset. + Raises: MissingConditionalImportError: If datasets not installed raise exception. @@ -1643,8 +1653,7 @@ def get_icl_task_dataloader( # At this point, hf_model is randomly initialized composer_model = HuggingFaceModel(hf_model, hf_tokenizer) - Example: - + Example: .. testcode:: @@ -1685,8 +1694,8 @@ def get_icl_task_dataloader( hf_loading_vars (Dict, default = None): A dictionary containing keyword arguments to be passed into `load_dataset` if dataset is being pulled from HF. hf_parsing_map (Dict, default = None): A dictionary containing a mapping from HF columns to ICL dataset keys. The dictionary should be formatted {icl_key:[hf_key1, hf_key1]}. Column contents will be concatenated with ' ' separating them. If not included, will load the columns already present in the HF dataset. - kwargs (Dict[str, Any], default=None): Dictionary containing a mapping - from ICL dataset constructor's parameter names and their desired values. + destination_path: Where the dataloader will be saved. + kwargs (Dict[str, Any], default=None): Dictionary containing a mapping from ICL dataset constructor's parameter names and their desired values. Returns: DataLoader: A dataloader used for performing in-context learning evaluation on the dataset provided. diff --git a/llmfoundry/eval/datasets/utils.py b/llmfoundry/eval/datasets/utils.py index 1ce249437d..c19ae15dd9 100644 --- a/llmfoundry/eval/datasets/utils.py +++ b/llmfoundry/eval/datasets/utils.py @@ -130,7 +130,7 @@ def make_padded_input( Args: context_enc (List): The encoded input to the model continuation_enc (List): The encoded desired output for the example - max_seq_list (int): Maximum length sequences can be + max_seq_len (int): Maximum length sequences can be pad_tok_id (int): The token id we pad with padding_side (str): Which side to pad the context on. Can be 'right' or 'left diff --git a/llmfoundry/eval/metrics/nlp.py b/llmfoundry/eval/metrics/nlp.py index 3ee30ebf5e..f0fbba3ece 100644 --- a/llmfoundry/eval/metrics/nlp.py +++ b/llmfoundry/eval/metrics/nlp.py @@ -80,7 +80,7 @@ def update( Args: batch (dict): Batch must consist minimally of `input_ids` as well as any other structure needed to compute the metric. - output_logits (torch.Tensor): The model outputs evaluated on the batch `input_ids` + outputs (torch.Tensor): The model outputs evaluated on the batch `input_ids`. labels (torch.Tensor): The correct outputs. Raises: diff --git a/llmfoundry/models/hf/hf_causal_lm.py b/llmfoundry/models/hf/hf_causal_lm.py index f7f372f5fa..34ce22d694 100644 --- a/llmfoundry/models/hf/hf_causal_lm.py +++ b/llmfoundry/models/hf/hf_causal_lm.py @@ -205,6 +205,7 @@ def build_inner_model( use_auth_token (bool): Whether to use an authentication token. config_overrides (Dict[str, Any]): The configuration overrides. load_in_8bit (bool): Whether to load in 8-bit. + pretrained (bool): Whether the model is pretrained. prepare_for_fsdp (bool, optional): Whether to prepare the model for FSDP wrapping. Default: False. Returns: diff --git a/llmfoundry/models/layers/attention.py b/llmfoundry/models/layers/attention.py index c7fdb5b987..3e365edc47 100644 --- a/llmfoundry/models/layers/attention.py +++ b/llmfoundry/models/layers/attention.py @@ -606,6 +606,7 @@ def get_qkv( Args: x (torch.Tensor): The input tensor. + prev_layer_key_value (Optional[Tuple[torch.Tensor, torch.Tensor]]): The key value of the previous layer. Returns: query (torch.Tensor): The query tensor. diff --git a/llmfoundry/models/layers/ffn.py b/llmfoundry/models/layers/ffn.py index 8028a65a8b..f5d6d67040 100644 --- a/llmfoundry/models/layers/ffn.py +++ b/llmfoundry/models/layers/ffn.py @@ -429,6 +429,7 @@ def set_ffn_device_mesh( ffn (nn.Module): The FFN module. moe_world_size (int): The MoE world size. device_mesh (DeviceMesh): The full device mesh. + get_fsdp_submesh (Callable[[DeviceMesh], DeviceMesh]): A function to get the fsdp submesh. Raises: RuntimeError: If the device mesh is 3D. diff --git a/llmfoundry/models/mpt/configuration_mpt.py b/llmfoundry/models/mpt/configuration_mpt.py index 86cc3519ba..9671eb6ed5 100644 --- a/llmfoundry/models/mpt/configuration_mpt.py +++ b/llmfoundry/models/mpt/configuration_mpt.py @@ -147,6 +147,7 @@ def __init__( reuse_kv_layer: attn_config: reuse_kv_layer_idx: -6 # Relative index of the layer whose kv cache to reuse + kwargs (Any): Other relevant keyword arguments. """ self.d_model = d_model self.n_heads = n_heads diff --git a/llmfoundry/tokenizers/tiktoken.py b/llmfoundry/tokenizers/tiktoken.py index f087664344..fd0fc5948a 100644 --- a/llmfoundry/tokenizers/tiktoken.py +++ b/llmfoundry/tokenizers/tiktoken.py @@ -90,6 +90,7 @@ def __init__( errors (str, optional): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. Defaults to `"replace"`. + kwargs (Any): Other relevant keyword arguments. """ try: import tiktoken diff --git a/llmfoundry/utils/builders.py b/llmfoundry/utils/builders.py index 9f18c31ec6..000155f1a4 100644 --- a/llmfoundry/utils/builders.py +++ b/llmfoundry/utils/builders.py @@ -35,8 +35,9 @@ from llmfoundry import registry from llmfoundry.callbacks import EvalGauntlet from llmfoundry.data.dataloader import build_dataloader -from llmfoundry.eval.datasets.in_context_learning_evaluation import \ - get_icl_task_dataloader +from llmfoundry.eval.datasets.in_context_learning_evaluation import ( + get_icl_task_dataloader, +) from llmfoundry.utils.config_utils import to_dict_container, to_list_container from llmfoundry.utils.registry_utils import construct_from_registry @@ -191,7 +192,8 @@ def build_load_planner(name: str, **kwargs: Any) -> LoadPlanner: """Builds a load planner from the registry. Args: - name: Name of the load planner to build. + name (str): Name of the load planner to build. + kwargs (Any): Other relevant keyword arguments. Returns: LoadPlanner: The load planner. @@ -210,7 +212,8 @@ def build_save_planner(name: str, **kwargs: Any) -> SavePlanner: """Builds a save planner from the registry. Args: - name: Name of the save planner to build. + name (str): Name of the save planner to build. + kwargs (Any): Other relevant keyword arguments. Returns: savePlanner: The save planner. diff --git a/llmfoundry/utils/checkpoint_conversion_helpers.py b/llmfoundry/utils/checkpoint_conversion_helpers.py index 905afd6edb..5c65a7475e 100644 --- a/llmfoundry/utils/checkpoint_conversion_helpers.py +++ b/llmfoundry/utils/checkpoint_conversion_helpers.py @@ -177,6 +177,7 @@ def _convert_weight_to_ft_each( tensor_name (str): Name of the weight tensor. Used in naming the output file. config (Dict[str, Any]): Configuration for the model. This is used in getting model specific parameters. data (np.ndarray): Tensor data in np.ndarray format. + np_weight_data_type (np.dtype): Data type of the numpy array `data`. Returns: None: Writes to a file in `save_dir`. File name is based on the `tensor_name` diff --git a/llmfoundry/utils/config_utils.py b/llmfoundry/utils/config_utils.py index 6811b09e7d..f10fe32735 100644 --- a/llmfoundry/utils/config_utils.py +++ b/llmfoundry/utils/config_utils.py @@ -466,6 +466,9 @@ def update_config_with_batch_size_info( Args: cfg (Dict[str, Any]): The config to update. + device_train_batch_size (Union[int, float]): The batch size of the training dataset for each device. + device_train_microbatch_size (Union[int, float, Literal['auto']]): The microbatch size of the training dataset for each device. + device_train_grad_accum (Union[int, Literal['auto']]): The gradient accumulation settings for each device. Returns: Dict[str, Any]: The updated config. diff --git a/llmfoundry/utils/model_download_utils.py b/llmfoundry/utils/model_download_utils.py index dde8240d8b..9609982fda 100644 --- a/llmfoundry/utils/model_download_utils.py +++ b/llmfoundry/utils/model_download_utils.py @@ -69,7 +69,7 @@ def download_from_hf_hub( Safetensors weights will be downloaded unless `prefer_safetensors` is set to False. Args: - repo_id (str): The Hugging Face Hub repo ID. + model (str): The Hugging Face Hub repo ID. save_dir (str, optional): The local path to the directory where the model files will be downloaded. prefer_safetensors (bool): Whether to prefer Safetensors weights over PyTorch weights if both are available. Defaults to True. @@ -157,7 +157,7 @@ def _recursive_download( Args: session: A requests.Session through which to make requests to the remote server. - url (str): The base URL where the files are located. + base_url (str): The base URL where the files are located. path (str): The path from the base URL to the files to download. The full URL for the download is equal to '/'. save_dir (str): The directory to save downloaded files to. diff --git a/llmfoundry/utils/registry_utils.py b/llmfoundry/utils/registry_utils.py index 3ea7cc58a7..f96e72b3a2 100644 --- a/llmfoundry/utils/registry_utils.py +++ b/llmfoundry/utils/registry_utils.py @@ -127,6 +127,7 @@ def construct_from_registry( before constructing the item to return. This should throw an exception if validation fails. Defaults to None. post_validation_function (Optional[Callable[[Any], None]], optional): An optional validation function called after constructing the item to return. This should throw an exception if validation fails. Defaults to None. + kwargs (Optional[Dict[str, Any]]): Other relevant keyword arguments. Raises: ValueError: If the validation functions failed or the registered item is invalid @@ -176,6 +177,7 @@ def import_file(loc: Union[str, Path]) -> ModuleType: """Import module from a file. Used to run arbitrary python code. + Args: name (str): Name of module to load. loc (str / Path): Path to the file. diff --git a/pyproject.toml b/pyproject.toml index e5c931f4c5..fdbabfff96 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,23 +11,44 @@ skip = [ "env", "wandb", "runs", "build", "node_modules" ] include_trailing_comma = true split_on_trailing_comma = true +# Ruff global +[tool.ruff] +exclude = [ + "build/**", + "docs/**", + "node_modules/**", +] + +# Ruff linter [tool.ruff.lint] select = [ "C4", - # TODO port pydocstyle - # "D", # pydocstyle "LOG", "PERF", "PLE", "COM812", + "D", # pydocstyle ] -[tool.ruff] -exclude = [ - "build/**", - "docs/**", - "node_modules/**", + +extend-select = ["D404"] # pydocstyle + +ignore = [ + "D100", + "D101", + "D102", + "D103", + "D104", + "D105", + "D107", + "D400", + "D401", + "D415", ] +[tool.ruff.lint.pydocstyle] +convention = "google" + + # Coverage [tool.coverage.run] parallel = true @@ -506,8 +527,3 @@ ignore_patterns = [ "wandb/**/*.py", "build/**/*.py", ] - -[tool.pydocstyle] -convention="google" -add_ignore="D100,D101,D102,D103,D104,D105,D107,D400,D401,D415" -add_select="D404"