forked from google/syzkaller
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimization.go
270 lines (250 loc) · 7.01 KB
/
minimization.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Copyright 2018 syzkaller project authors. All rights reserved.
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
package prog
import (
"fmt"
)
// Minimize minimizes program p into an equivalent program using the equivalence
// predicate pred. It iteratively generates simpler programs and asks pred
// whether it is equal to the original program or not. If it is equivalent then
// the simplification attempt is committed and the process continues.
func Minimize(p0 *Prog, callIndex0 int, crash bool, pred0 func(*Prog, int) bool) (*Prog, int) {
pred := func(p *Prog, callIndex int) bool {
p.sanitizeFix()
p.debugValidate()
return pred0(p, callIndex)
}
name0 := ""
if callIndex0 != -1 {
if callIndex0 < 0 || callIndex0 >= len(p0.Calls) {
panic("bad call index")
}
name0 = p0.Calls[callIndex0].Meta.Name
}
// Try to remove all calls except the last one one-by-one.
p0, callIndex0 = removeCalls(p0, callIndex0, crash, pred)
// Try to minimize individual args.
for i := 0; i < len(p0.Calls); i++ {
ctx := &minimizeArgsCtx{
target: p0.Target,
p0: &p0,
callIndex0: callIndex0,
crash: crash,
pred: pred,
triedPaths: make(map[string]bool),
}
again:
ctx.p = p0.Clone()
ctx.call = ctx.p.Calls[i]
for j, field := range ctx.call.Meta.Args {
if ctx.do(ctx.call.Args[j], field.Name, "") {
goto again
}
}
}
if callIndex0 != -1 {
if callIndex0 < 0 || callIndex0 >= len(p0.Calls) || name0 != p0.Calls[callIndex0].Meta.Name {
panic(fmt.Sprintf("bad call index after minimization: ncalls=%v index=%v call=%v/%v",
len(p0.Calls), callIndex0, name0, p0.Calls[callIndex0].Meta.Name))
}
}
return p0, callIndex0
}
func removeCalls(p0 *Prog, callIndex0 int, crash bool, pred func(*Prog, int) bool) (*Prog, int) {
for i := len(p0.Calls) - 1; i >= 0; i-- {
if i == callIndex0 {
continue
}
callIndex := callIndex0
if i < callIndex {
callIndex--
}
p := p0.Clone()
p.removeCall(i)
if !pred(p, callIndex) {
continue
}
p0 = p
callIndex0 = callIndex
}
return p0, callIndex0
}
type minimizeArgsCtx struct {
target *Target
p0 **Prog
p *Prog
call *Call
callIndex0 int
crash bool
pred func(*Prog, int) bool
triedPaths map[string]bool
}
func (ctx *minimizeArgsCtx) do(arg Arg, field, path string) bool {
path += fmt.Sprintf("-%v", field)
if ctx.triedPaths[path] {
return false
}
p0 := *ctx.p0
if arg.Type().minimize(ctx, arg, path) {
return true
}
if *ctx.p0 == ctx.p {
// If minimize committed a new program, it must return true.
// Otherwise *ctx.p0 and ctx.p will point to the same program
// and any temp mutations to ctx.p will unintentionally affect ctx.p0.
panic("shared program committed")
}
if *ctx.p0 != p0 {
// New program was committed, but we did not start iteration anew.
// This means we are iterating over a stale tree and any changes won't be visible.
panic("iterating over stale program")
}
ctx.triedPaths[path] = true
return false
}
func (typ *TypeCommon) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
return false
}
func (typ *StructType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
a := arg.(*GroupArg)
for i, innerArg := range a.Inner {
if ctx.do(innerArg, typ.Fields[i].Name, path) {
return true
}
}
return false
}
func (typ *UnionType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
a := arg.(*UnionArg)
return ctx.do(a.Option, typ.Fields[a.Index].Name, path)
}
func (typ *PtrType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
a := arg.(*PointerArg)
if a.Res == nil {
return false
}
if path1 := path + ">"; !ctx.triedPaths[path1] {
removeArg(a.Res)
replaceArg(a, MakeSpecialPointerArg(a.Type(), a.Dir(), 0))
ctx.target.assignSizesCall(ctx.call)
if ctx.pred(ctx.p, ctx.callIndex0) {
*ctx.p0 = ctx.p
}
ctx.triedPaths[path1] = true
return true
}
return ctx.do(a.Res, "", path)
}
func (typ *ArrayType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
a := arg.(*GroupArg)
for i := len(a.Inner) - 1; i >= 0; i-- {
elem := a.Inner[i]
elemPath := fmt.Sprintf("%v-%v", path, i)
// Try to remove individual elements one-by-one.
if !ctx.crash && !ctx.triedPaths[elemPath] &&
(typ.Kind == ArrayRandLen ||
typ.Kind == ArrayRangeLen && uint64(len(a.Inner)) > typ.RangeBegin) {
ctx.triedPaths[elemPath] = true
copy(a.Inner[i:], a.Inner[i+1:])
a.Inner = a.Inner[:len(a.Inner)-1]
removeArg(elem)
ctx.target.assignSizesCall(ctx.call)
if ctx.pred(ctx.p, ctx.callIndex0) {
*ctx.p0 = ctx.p
}
return true
}
if ctx.do(elem, "", elemPath) {
return true
}
}
return false
}
func (typ *IntType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
return minimizeInt(ctx, arg, path)
}
func (typ *FlagsType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
return minimizeInt(ctx, arg, path)
}
func (typ *ProcType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
if !typ.Optional() {
// Default value for ProcType is 0 (same for all PID's).
// Usually 0 either does not make sense at all or make different PIDs collide
// (since we use ProcType to separate value ranges for different PIDs).
// So don't change ProcType to 0 unless the type is explicitly marked as opt
// (in that case we will also generate 0 anyway).
return false
}
return minimizeInt(ctx, arg, path)
}
func minimizeInt(ctx *minimizeArgsCtx, arg Arg, path string) bool {
// TODO: try to reset bits in ints
// TODO: try to set separate flags
if ctx.crash {
return false
}
a := arg.(*ConstArg)
def := arg.Type().DefaultArg(arg.Dir()).(*ConstArg)
if a.Val == def.Val {
return false
}
v0 := a.Val
a.Val = def.Val
if ctx.pred(ctx.p, ctx.callIndex0) {
*ctx.p0 = ctx.p
ctx.triedPaths[path] = true
return true
}
a.Val = v0
return false
}
func (typ *ResourceType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
if ctx.crash {
return false
}
a := arg.(*ResultArg)
if a.Res == nil {
return false
}
r0 := a.Res
delete(a.Res.uses, a)
a.Res, a.Val = nil, typ.Default()
if ctx.pred(ctx.p, ctx.callIndex0) {
*ctx.p0 = ctx.p
} else {
a.Res, a.Val = r0, 0
a.Res.uses[a] = true
}
ctx.triedPaths[path] = true
return true
}
func (typ *BufferType) minimize(ctx *minimizeArgsCtx, arg Arg, path string) bool {
// TODO: try to set individual bytes to 0
if typ.Kind != BufferBlobRand && typ.Kind != BufferBlobRange || arg.Dir() == DirOut {
return false
}
a := arg.(*DataArg)
len0 := len(a.Data())
minLen := int(typ.RangeBegin)
for step := len(a.Data()) - minLen; len(a.Data()) > minLen && step > 0; {
if len(a.Data())-step >= minLen {
a.data = a.Data()[:len(a.Data())-step]
ctx.target.assignSizesCall(ctx.call)
if ctx.pred(ctx.p, ctx.callIndex0) {
continue
}
a.data = a.Data()[:len(a.Data())+step]
ctx.target.assignSizesCall(ctx.call)
}
step /= 2
if ctx.crash {
break
}
}
if len(a.Data()) != len0 {
*ctx.p0 = ctx.p
ctx.triedPaths[path] = true
return true
}
return false
}