Skip to content

Latest commit

 

History

History
147 lines (139 loc) · 5.92 KB

README.md

File metadata and controls

147 lines (139 loc) · 5.92 KB

segment_deeplab

This project describes the use of TensorFlow's DeepLab v3 for semantic segmentation.

Prerequisites

We assume a Linux development environment running on Ubuntu 18.04. We assume that the training of the model will be performed on a system with an NVIDIA GPU, and as such we need to have CUDA and cuDNN installed.

  1. Install CUDA:
    $ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
    $ sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
    $ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
    $ sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
    $ sudo apt-get update
    $ sudo apt-get -y install cuda
  2. Install cuDNN:
    1. Login to the NVIDIA Developer Network
    2. Download the cuDNN Runtime Library for Ubuntu18.04
    $ sudo apt install ./libcudnn7_7.6.5.32-1+cuda10.2_amd64.deb
    
  3. Install OpenCV:
    $ sudo apt-get install libopencv-dev python3-opencv
    

Python Environment

  1. Create a new Python virtual environment:
    $ conda config --add channels conda-forge
    $ conda create -n deeplab python=3 --yes
    $ conda activate deeplab
  2. Get the TensorFlow DeepLab API:
    $ git clone https://github.com/tensorflow/models.git
    $ cd models/research
    $ export TFMODELS=`pwd`
    $ cd deeplab
    $ export DEEPLAB=`pwd`
  3. Install additional libraries we'll use in our project (assumes that conda-forge is the primary channel):
    $ for pkg in opencv imutils tensorflow-gpu
    > do
    > conda install $pkg --yes
    > done
    $ pip install cvdata
  4. Verify the installation:
    $ python
    >>> import cv2
    >>> import cvdata
    >>> import imutils
    >>> import tensorflow
    >>>
  5. Set the models/research directory into the PYTHONPATH environment variable:
    $ export PYTHONPATH=/home/ubuntu/git/models/research

Training Dataset

Acquire a dataset of images and corresponding object segmentation masks. This project assumes a dataset with a directory of image files in JPG format and a corresponding directory of mask image files in PNG format matching to each image file. The mask files are expected to contain mask values corresponding to the class ID of the objects being masked, with unmasked/background having value 0. For example if we have two classes, dog and cat with class IDs 1 and 2 respectively, then all dog masks in a mask image will be denoted with value 1 and all cat masks will be denoted with value 2.

An example dataset that includes image mask files is the ISIC 2018 Skin Lesion Analysis Dataset.

In order to convert the dataset of images and masks into TFRecords, which is the data format used for training data, we'll use the cvdata package's cvdata_mask entry point:

$ cvdata_mask --images /data/images --masks /data/masks \
>       --in_format png --out_format tfrecord \
>       --tfrecords /data/tfrecords \
>       --shards 4 -- train_pct 0.8

The above example execution will result in eight TFRecord files -- four TFRecords for the training set, comprising of 80% of the images/masks, and four TFRecords for the validation set, comprising of 20% of the images/masks.

Once we have the TFRecords for training and validation we then modify the file $DEEPLAB/segmentation_dataset.py

Training

Pretrained model

Download a pretrained model checkpoint from the DeepLab Model Zoo:

$ wget http://download.tensorflow.org/models/xception_65_coco_pretrained_2018_10_02.tar.gz
$ tar -zxf xception_65_coco_pretrained_2018_10_02.tar.gz
Training script

Run the DeepLab training script referencing the pretrained model checkpoint, local dataset directory, training log directory, etc. For example:

$ cd ${TFMODELS}
$ python deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=30000 \
    --train_split="train" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --train_crop_size="513,513" \
    --train_batch_size=1 \
    --dataset="basins" \
    --tf_initial_checkpoint=/home/ubuntu/deeplab/pretrained/x65-b2u1s2p-d48-2-3x256-sc-cr300k_init.ckpt.data-00000-of-00001 \
    --train_logdir=${DEEPLAB}/datasets/basins/exp/train_on_train_set/train \
    --dataset_dir=${DEEPLAB}/datasets/basins
Evaluation script

Once the model has started training and has written some checkpoints then an evaluation can be preformed using the DeepLab evaluation script. For example:

$ cd ${TFMODELS}
$ python deeplab/eval.py \
    --logtostderr \
    --eval_split="val" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --eval_crop_size="513,513" \
    --dataset="basins" \
    --checkpoint_dir=${DEEPLAB}/datasets/basins/exp/train_on_train_set/train \
    --eval_logdir=${DEEPLAB}/datasets/basins/exp/train_on_train_set/eval \
    --dataset_dir=${DEEPLAB}/datasets/basins