forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6 - 4 - Cost Function (11 min).srt
1661 lines (1329 loc) · 28.7 KB
/
6 - 4 - Cost Function (11 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,160 --> 00:00:01,704
In this video we'll talk about
在这段视频中 我们要讲
(字幕整理:中国海洋大学 黄海广,[email protected] )
2
00:00:01,704 --> 00:00:04,010
how to fit the parameters theta
如何拟合逻辑回归
3
00:00:04,040 --> 00:00:05,869
for logistic regression.
模型的参数θ
4
00:00:05,880 --> 00:00:06,982
In particular, I'd like to
具体来说 我要定义
5
00:00:07,020 --> 00:00:10,386
define the optimization objective or the
用来拟合参数的
6
00:00:10,400 --> 00:00:14,470
cost function that we'll use to fit the parameters.
优化目标或者叫代价函数
7
00:00:15,390 --> 00:00:17,370
Here's to supervised learning problem
这便是监督学习问题中的
8
00:00:17,370 --> 00:00:19,892
of fitting a logistic regression model.
逻辑回归模型的拟合问题
9
00:00:19,960 --> 00:00:22,210
We have a training set
我们有一个训练集
10
00:00:22,210 --> 00:00:24,964
of M training examples.
里面有m个训练样本
11
00:00:24,964 --> 00:00:26,577
And as usual each of
像以前一样
12
00:00:26,577 --> 00:00:28,130
our examples is represented by
我们的每个样本
13
00:00:28,150 --> 00:00:32,830
feature vector that's N plus 1 dimensional.
用n+1维的特征向量表示
14
00:00:32,830 --> 00:00:35,133
And as usual we have
同样和以前一样
15
00:00:35,180 --> 00:00:36,498
X 0 equals 1.
x0 = 1
16
00:00:36,498 --> 00:00:38,315
Our first feature, or our 0
第一个特征变量
17
00:00:38,315 --> 00:00:39,951
feature is always equal to 1,
或者说第0个特征变量 一直是1
18
00:00:39,970 --> 00:00:41,203
and because this is a
而且因为这是一个分类问题
19
00:00:41,203 --> 00:00:43,335
classification problem, our training
我们的训练集
20
00:00:43,350 --> 00:00:44,999
set has the property that
具有这样的特征
21
00:00:45,010 --> 00:00:48,422
every label Y, is either 0 or 1.
所有的y 不是0就是1
22
00:00:48,422 --> 00:00:50,576
This is a hypothesis
这是一个假设函数
23
00:00:50,576 --> 00:00:52,007
and the parameters of the
它的参数
24
00:00:52,007 --> 00:00:54,460
hypothesis is this theta over here.
是这里的这个θ
25
00:00:54,490 --> 00:00:55,572
And the question I want
我要说的问题是
26
00:00:55,610 --> 00:00:57,339
to talk about is given this
对于这个给定的训练集
27
00:00:57,340 --> 00:00:58,846
training set how do
我们如何选择
28
00:00:58,880 --> 00:01:02,482
we choose, or how do we fit the parameters theta?
或者说如何拟合参数θ
29
00:01:02,510 --> 00:01:04,125
Back when we were developing the
以前我们推导线性回归时
30
00:01:04,125 --> 00:01:08,463
linear regression model, we use the following cost function.
使用了这个代价函数
31
00:01:08,480 --> 00:01:10,868
I've written this slightly differently, where
我把这个写成稍微有点儿不同的形式
32
00:01:10,900 --> 00:01:12,663
instead of 1/2m, I've
不写原先的1/2m
33
00:01:12,670 --> 00:01:16,440
taken the 1/2 and put it inside the summation instead.
我把1/2放到求和符号里面了
34
00:01:16,440 --> 00:01:17,440
Now, I want to use
现在我想用
35
00:01:17,440 --> 00:01:19,132
an alternative way of writing
另一种方法
36
00:01:19,140 --> 00:01:20,663
out this cost function which is
来写代价函数
37
00:01:20,700 --> 00:01:22,009
that instead of writing out
去掉这个平方项
38
00:01:22,030 --> 00:01:23,920
this squared and return here,
把这里写成
39
00:01:23,920 --> 00:01:27,100
let's write here, cost of
这样的形式
40
00:01:28,310 --> 00:01:31,476
H of X comma
(具体公式请看屏幕)
41
00:01:31,500 --> 00:01:33,605
Y, and I'm going
(具体公式请看屏幕)
42
00:01:33,605 --> 00:01:37,176
to define that term cost
定义这个代价函数Cost函数
43
00:01:37,210 --> 00:01:39,727
of H of X comma Y to be equal to this.
等于这个
44
00:01:39,740 --> 00:01:42,641
It's just equal to just one half of the square root error.
等于这个1/2的平方根误差
45
00:01:42,670 --> 00:01:43,800
So now, we can see more
因此现在
46
00:01:43,800 --> 00:01:46,018
clearly that the cost
我们能更清楚的看到
47
00:01:46,018 --> 00:01:48,145
function is a sum
代价函数是这个Cost函数
48
00:01:48,145 --> 00:01:49,740
over my training set, or
在训练集范围上的求和
49
00:01:49,740 --> 00:01:51,427
is 1/m times the sum
或者说是1/m倍的
50
00:01:51,427 --> 00:01:56,046
over my training set of this cost term here.
这个代价项在训练集范围上的求和
51
00:01:56,050 --> 00:01:58,065
And to simplify this
然后稍微简化一下这个式子
52
00:01:58,065 --> 00:01:59,470
equation a little bit more, it's gonna
去掉这些上标
53
00:01:59,490 --> 00:02:02,587
be convenient to get rid of those superscripts.
会显得方便一些
54
00:02:02,610 --> 00:02:04,408
So just define cost of
所以直接定义
55
00:02:04,408 --> 00:02:05,527
H of X comma Y to
代价值(h(X), Y)
56
00:02:05,527 --> 00:02:06,618
be equal to 1/2 of
等于1/2倍的
57
00:02:06,618 --> 00:02:08,925
this square root error and the
这个平方根误差
58
00:02:08,925 --> 00:02:10,336
interpretation of this cost function
对这个代价项的理解是这样的
59
00:02:10,360 --> 00:02:11,876
is that this is the
这是我所期望的
60
00:02:11,890 --> 00:02:13,447
cost I want my learning
我的学习算法
61
00:02:13,460 --> 00:02:15,110
algorithm to, you know,
如果想要达到这个值
62
00:02:15,110 --> 00:02:16,701
have to pay, if it
也就是这个假设h(x)
63
00:02:16,750 --> 00:02:18,737
outputs that value it
所需要付出的代价
64
00:02:18,737 --> 00:02:19,912
this prediction is H of
这个希望的预测值是h(x)
65
00:02:19,912 --> 00:02:21,258
X, and the actual
而实际值则是y
66
00:02:21,310 --> 00:02:24,035
label was Y. So just
干脆
67
00:02:24,050 --> 00:02:27,836
cross off those superscripts. All right.
全部去掉那些上标好了
68
00:02:27,840 --> 00:02:29,756
And no surprise for linear
显然 在线性回归中
69
00:02:29,756 --> 00:02:31,537
regression the cost for you to define is that.
代价值会被定义为这个
70
00:02:31,537 --> 00:02:32,757
Well the cost for this
这个代价值是
71
00:02:32,757 --> 00:02:34,535
is, that is 1/2
1/2乘以
72
00:02:34,540 --> 00:02:36,232
times the square difference
预测值h和
73
00:02:36,232 --> 00:02:37,663
between what are predicted and the
实际值观测的结果y
74
00:02:37,670 --> 00:02:38,943
actual value that we observe
的差的平方
75
00:02:38,943 --> 00:02:41,103
for Y. Now, this cost
这个代价值可以
76
00:02:41,103 --> 00:02:42,848
function worked fine for linear
很好地用在线性回归里
77
00:02:42,848 --> 00:02:47,418
regression, but here we're interested in logistic regression.
但是我们现在要用在逻辑回归里
78
00:02:47,430 --> 00:02:49,146
If we could minimize this cost
如果我们可以最小化
79
00:02:49,150 --> 00:02:51,992
function that is plugged into J here.
代价函数J里面的这个代价值
80
00:02:52,020 --> 00:02:53,817
That will work okay.
它会工作得很好
81
00:02:53,817 --> 00:02:55,476
But it turns out that if
但实际上
82
00:02:55,480 --> 00:02:57,640
we use this particular cost function
如果我们使用这个代价值
83
00:02:57,640 --> 00:03:01,807
this would be a non-convex function of the parameters theta.
它会变成参数θ的非凸函数
84
00:03:01,820 --> 00:03:03,968
Here's what I mean by non-convex.
我说的非凸函数是这个意思
85
00:03:03,990 --> 00:03:05,313
We have some cost function J
对于这样一个代价函数J(θ)
86
00:03:05,313 --> 00:03:08,118
of theta, and for logistic
对于逻辑回归来说
87
00:03:08,140 --> 00:03:12,113
regression this function H here
这里的h函数
88
00:03:12,113 --> 00:03:13,495
has a non linearity, right?
是非线性的 对吧?
89
00:03:13,500 --> 00:03:14,538
It says, you know, 1 over
它是等于 1 除以
90
00:03:14,538 --> 00:03:16,384
1 plus E to the negative theta transfers
1+e的-θ转置乘以X次方
91
00:03:16,384 --> 00:03:19,591
X. So it's a pretty complicated nonlinear function.
所以它是一个很复杂的非线性函数
92
00:03:19,591 --> 00:03:21,108
And if you take the sigmoid
如果对它取Sigmoid函数
93
00:03:21,130 --> 00:03:22,104
function and plug it in
然后把它放到这里
94
00:03:22,104 --> 00:03:23,239
here and then take
然后求它的代价值
95
00:03:23,300 --> 00:03:25,016
this cost function and plug
再把它放到这里
96
00:03:25,020 --> 00:03:26,746
it in there, and then plot
然后再画出
97
00:03:26,746 --> 00:03:28,200
what J of theta looks
J(θ)长什么模样
98
00:03:28,210 --> 00:03:29,650
like, you find that
你会发现
99
00:03:29,650 --> 00:03:33,493
J of theta can look like a function just like this.
J(θ)可能是一个这样的函数
100
00:03:33,500 --> 00:03:35,958
You know with many local optima and
有很多局部最优值
101
00:03:35,958 --> 00:03:37,321
the formal term for this
称呼它的正式术语是
102
00:03:37,340 --> 00:03:39,488
is that this a non convex function.
这是一个非凸函数
103
00:03:39,500 --> 00:03:40,644
And you can kind of tell.
你大概可以发现
104
00:03:40,644 --> 00:03:41,880
If you were to run gradient
如果你把梯度下降法
105
00:03:41,880 --> 00:03:43,192
descent on this sort of
用在一个这样的函数上
106
00:03:43,192 --> 00:03:45,160
function, it is not guaranteed
不能保证它会
107
00:03:45,170 --> 00:03:47,747
to converge to the global minimum.
收敛到全局最小值
108
00:03:47,747 --> 00:03:48,867
Whereas in contrast, what
相应地
109
00:03:48,870 --> 00:03:50,350
we would like is to have
我们希望
110
00:03:50,350 --> 00:03:52,100
a cost function J of theta
我们的代价函数J(θ)
111
00:03:52,100 --> 00:03:53,599
that is convex, that is
是一个凸函数
112
00:03:53,599 --> 00:03:55,250
a single bow-shaped function that
是一个单弓形函数
113
00:03:55,250 --> 00:03:56,675
looks like this, so that
大概是这样
114
00:03:56,675 --> 00:03:58,543
if you run gradient descent, we
所以如果对它使用梯度下降法
115
00:03:58,543 --> 00:04:01,147
would be guaranteed that gradient descent, you know,
我们可以保证梯度下降法
116
00:04:01,170 --> 00:04:04,917
would converge to the global minimum.
会收敛到该函数的全局最小值
117
00:04:04,917 --> 00:04:07,020
And the problem of using the
但使用这个
118
00:04:07,020 --> 00:04:08,460
the square cost function is that
平方代价函数的问题是
119
00:04:08,520 --> 00:04:10,400
because of this very
因为中间的这个
120
00:04:10,400 --> 00:04:12,371
non linear sigmoid function that
非常非线性的
121
00:04:12,371 --> 00:04:14,107
appears in the middle here, J of
sigmoid函数的出现
122
00:04:14,107 --> 00:04:15,987
theta ends up being
导致J(θ)成为
123
00:04:15,987 --> 00:04:17,962
a non convex function if you
一个非凸函数
124
00:04:17,962 --> 00:04:21,294
were to define it as the square cost function.
如果你要用平方函数定义它的话
125
00:04:21,294 --> 00:04:22,313
So what we'd would like to do
所以我们想做的是
126
00:04:22,320 --> 00:04:23,822
is to instead come up with
另外找一个
127
00:04:23,822 --> 00:04:25,576
a different cost function that
不同的代价函数
128
00:04:25,576 --> 00:04:28,063
is convex and so
它是凸函数
129
00:04:28,063 --> 00:04:29,257
that we can apply a great
使得我们可以使用很好的算法
130
00:04:29,280 --> 00:04:30,919
algorithm like gradient descent
如梯度下降法
131
00:04:30,940 --> 00:04:33,683
and be guaranteed to find a global minimum.
而且能保证找到全局最小值
132
00:04:33,683 --> 00:04:37,295
Here's a cost function that we're going to use for logistic regression.
这个代价函数便是我们要用在逻辑回归上的
133
00:04:37,295 --> 00:04:39,313
We're going to say the cost
我们认为
134
00:04:39,320 --> 00:04:40,710
or the penalty that the algorithm
这个算法要付的代价或者惩罚
135
00:04:40,710 --> 00:04:42,924
pays if it outputs
如果输出值是h(x)
136
00:04:42,924 --> 00:04:44,596
a value H of X.
或者换句话说
137
00:04:44,620 --> 00:04:46,722
So, this is some number like 0.7
假如说预测值h(x)
138
00:04:46,722 --> 00:04:48,670
where it predicts a value H
是一个数 比如0.7
139
00:04:48,670 --> 00:04:50,780
of X. And the actual
而实际上
140
00:04:50,780 --> 00:04:52,032
cost label turns out to
真实的标签值是y
141
00:04:52,032 --> 00:04:54,087
be Y. The cost is
那么代价值将等于
142
00:04:54,090 --> 00:04:56,061
going to be minus log
-log(h(X))
143
00:04:56,100 --> 00:04:57,861
H of X if Y is equal 1.
当y=1时
144
00:04:57,861 --> 00:04:59,447
And minus log, 1 minus
以及-log(1-h(X))
145
00:04:59,460 --> 00:05:02,010
H of X if Y is equal to 0.
当y=0时
146
00:05:02,020 --> 00:05:04,205
This looks like a pretty complicated function.
这看起来是个非常复杂的函数
147
00:05:04,230 --> 00:05:05,773
But let's plot function to
但是让我们画出这个函数
148
00:05:05,773 --> 00:05:08,147
gain some intuition about what it's doing.
可以直观地感受一下它在做什么
149
00:05:08,160 --> 00:05:11,054
Let's start up with the case of Y equals 1.
我们从y=1这个情况开始
150
00:05:11,070 --> 00:05:12,461
If Y is equal equal
如果y等于1
151
00:05:12,461 --> 00:05:14,958
to 1, then the cost function
那么这个代价函数
152
00:05:14,958 --> 00:05:18,240
is -log H of X, and
是-log(h(X))
153
00:05:18,240 --> 00:05:19,601
if we plot that, so let's
如果我们画出它
154
00:05:19,601 --> 00:05:21,564
say that the horizontal
我们将h(X)
155
00:05:21,580 --> 00:05:22,961
axis is H of X.
画在横坐标上
156
00:05:22,961 --> 00:05:24,722
So we know that a hypothesis
我们知道假设函数
157
00:05:24,730 --> 00:05:26,611
is going to output a value between
的输出值
158
00:05:26,630 --> 00:05:28,465
0 and 1.
是在0和1之间的
159
00:05:28,465 --> 00:05:28,465
Right?
对吧?
160
00:05:28,490 --> 00:05:30,514
So H of X that varies
所以h(X)的值
161
00:05:30,530 --> 00:05:31,940
between 0 and 1.
在0和1之间变化
162
00:05:31,940 --> 00:05:35,469
If you plot what this cost function looks like.
如果你画出这个代价函数的样子
163
00:05:35,470 --> 00:05:37,981
You find that it looks like this.
你会发现它看起来是这样的
164
00:05:37,981 --> 00:05:39,044
One way to see why the
理解这个函数为什么是这样的
165
00:05:39,044 --> 00:05:41,363
plot like this it is because
一个方式是
166
00:05:41,440 --> 00:05:44,988
if you were to plot log Z
如果你画出log(z)
167
00:05:45,000 --> 00:05:47,656
with Z on the horizontal axis.
z在横轴上
168
00:05:47,656 --> 00:05:48,794
Then that looks like that.
它看起来会是这样
169
00:05:48,794 --> 00:05:50,369
And it's approach is minus infinity.
它趋于负无穷
170
00:05:50,369 --> 00:05:53,700
So this is what the log function looks like.
这是对数函数的样子
171
00:05:53,700 --> 00:05:55,963
And so this is 0, this is 1.
所以这里是0 这里是1
172
00:05:55,980 --> 00:05:57,560
Here Z is of
显然 这里的Z
173
00:05:57,560 --> 00:05:59,653
course playing the role of
就是代表h(x)的角色
174
00:05:59,653 --> 00:06:02,030
H of X. And so
因此
175
00:06:02,030 --> 00:06:06,329
minus log Z will look like this.
-log(Z)看起来这样
176
00:06:06,330 --> 00:06:08,098
Right just flipping the sign.
就是翻转一下符号
177
00:06:08,100 --> 00:06:09,822
Minus log Z. And we're
-log(Z)
178
00:06:09,822 --> 00:06:11,013
interested only in the
我们所感兴趣的是
179
00:06:11,020 --> 00:06:12,580
range of when this function
函数在0到1
180
00:06:12,610 --> 00:06:14,014
goes between 0 and 1.
之间的这个区间
181
00:06:14,014 --> 00:06:15,924
So, get rid of that.
所以 忽略那些
182
00:06:15,924 --> 00:06:17,962
And so, we're just left with,
所以只剩下
183
00:06:17,980 --> 00:06:21,555
you know, this part of the curve.
曲线的这部分
184
00:06:21,630 --> 00:06:23,200
And that's what this curve on the left looks like.
这就是左边这条曲线的样子
185
00:06:23,200 --> 00:06:25,472
Now this cost function
现在这个代价函数
186
00:06:25,500 --> 00:06:29,666
has a few interesting and desirable properties.
有一些有趣而且很好的性质
187
00:06:29,690 --> 00:06:32,103
First you notice that if
首先 你注意到
188
00:06:32,103 --> 00:06:35,003
Y is equal to 1 and H of X is equal 1, in
如果y=1而且h(X)=1
189
00:06:35,010 --> 00:06:37,367
other words, if the hypothesis
也就是说
190
00:06:37,410 --> 00:06:39,000
exactly, you know, predicts
如果假设函数
191
00:06:39,000 --> 00:06:40,261
H equals 1, and Y
刚好预测值是1
192
00:06:40,261 --> 00:06:42,744
is exactly equal to what I predicted.
而且y刚好等于我预测的
193
00:06:42,744 --> 00:06:44,432
Then the cost is equal 0.
那么这个代价值等于0
194
00:06:44,432 --> 00:06:44,432
Right?
对吧?
195
00:06:44,432 --> 00:06:47,475
That corresponds to, the curve doesn't actually flatten out.
这对应于… 这个曲线并不是平的
196
00:06:47,475 --> 00:06:49,866
The curve is still going. First, notice
曲线还在继续走
197
00:06:49,880 --> 00:06:51,006
that if H of X
首先 注意到如果h(x)=1
198
00:06:51,006 --> 00:06:53,056
equals 1, if the hypothesis
如果假设函数
199
00:06:53,056 --> 00:06:55,113
predicts that Y is equal to 1.
预测Y=1
200
00:06:55,113 --> 00:06:56,342
And if indeed Y is
并且如果y确实等于1