forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5 - 2 - Moving Data Around (16 min).srt
2136 lines (1709 loc) · 38.3 KB
/
5 - 2 - Moving Data Around (16 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,111 --> 00:00:02,628
In this second tutorial video on
在第二段关于 Octave的
(字幕整理:中国海洋大学 黄海广,[email protected] )
2
00:00:02,630 --> 00:00:03,904
Octave, I'd like to start
辅导课视频中 我将开始介绍
3
00:00:03,930 --> 00:00:07,322
to tell you how to move data around in Octave.
如何在 Octave 中移动数据
4
00:00:07,340 --> 00:00:08,783
So, if you have data for
具体来说
5
00:00:08,783 --> 00:00:12,125
a machine learning problem, how do you load that data in Octave?
如果你有一个机器学习问题 你怎样把数据加载到 Octave 中?
6
00:00:12,125 --> 00:00:13,693
How do you put it into matrix?
怎样把数据存入一个矩阵?
7
00:00:13,693 --> 00:00:15,284
How do you manipulate these matrices?
如何对矩阵进行相乘?
8
00:00:15,290 --> 00:00:16,982
How do you save the results?
如何保存计算结果?
9
00:00:17,000 --> 00:00:22,185
How do you move data around and operate with data?
如何移动这些数据 并用数据进行操作?
10
00:00:22,900 --> 00:00:25,044
Here's my Octave window as
和之前一样 这是我的 Octave 窗口
11
00:00:25,044 --> 00:00:29,256
before, picking up from where we left off in the last video.
我们继续沿用上次的窗口
12
00:00:29,290 --> 00:00:31,132
If I type A, that's
我键入 A
13
00:00:31,140 --> 00:00:32,258
the matrix so we generate it, right,
得到我们之前构建的矩阵 A
14
00:00:32,258 --> 00:00:35,197
with this command equals one, two,
也就是用这个命令生成的
15
00:00:35,197 --> 00:00:38,152
three, four, five, six, and
A = [1 2; 3 4; 5 6]
16
00:00:38,190 --> 00:00:40,696
this is a three by two matrix.
这是一个三行二列的矩阵
17
00:00:40,710 --> 00:00:42,415
The size command in Octave
Octave 中的 size() 命令
18
00:00:42,430 --> 00:00:46,361
lets you, tells you what is the size of a matrix.
返回矩阵的尺寸
19
00:00:46,361 --> 00:00:48,207
So size A returns three, two.
所以 size(A) 命令返回3 2
20
00:00:48,207 --> 00:00:50,160
It turns out that
实际上
21
00:00:50,180 --> 00:00:52,155
this size command itself is actually
size() 命令返回的
22
00:00:52,155 --> 00:00:54,591
returning a one by two matrix.
是一个 1×2 的矩阵
23
00:00:54,591 --> 00:00:56,598
So you can actually set SZ equals
我们可以用 sz 来存放
24
00:00:56,598 --> 00:00:58,370
size of A and SZ
设置 sz = size(A)
25
00:00:58,380 --> 00:00:59,597
is now a one by two
因此 sz 就是一个1×2的矩阵
26
00:00:59,597 --> 00:01:01,627
matrix where the first element
第一个元素是3
27
00:01:01,640 --> 00:01:04,689
of this is three, and the second element of this is two.
第二个元素是2
28
00:01:04,700 --> 00:01:07,494
So, if you just type size of SZ. Does SZ
所以如果键入 size(sz) 看看 sz 的尺寸
29
00:01:07,494 --> 00:01:08,898
is a one by
返回的是1 2
30
00:01:08,898 --> 00:01:10,862
two matrix whose two elements
表示是一个1×2的矩阵
31
00:01:10,862 --> 00:01:13,721
contain the dimensions of the
1 和 2 分别表示
32
00:01:13,721 --> 00:01:15,279
matrix A. You can
矩阵 A 的维度 (此处口误 应为 sz 的维度 译者注)
33
00:01:15,279 --> 00:01:17,787
also type size A one
你也可以键入 size(A, 1)
34
00:01:17,787 --> 00:01:19,505
to give you back the first
这个命令会返回
35
00:01:19,510 --> 00:01:21,542
dimension of A, size
A 矩阵的第一个元素
36
00:01:21,542 --> 00:01:22,662
of the first dimension of A.
A 矩阵的第一个维度的尺寸
37
00:01:22,680 --> 00:01:24,108
So that's the number
也就是 A 矩阵的行数
38
00:01:24,110 --> 00:01:26,307
of rows and size A two
同样 命令 size(A, 2)
39
00:01:26,320 --> 00:01:28,361
to give you back two, which
将返回2
40
00:01:28,361 --> 00:01:29,598
is the number of columns in
也就是 A 矩阵的列数
41
00:01:29,598 --> 00:01:31,942
the matrix A. If you
也就是 A 矩阵的列数
42
00:01:31,950 --> 00:01:34,034
have a vector V, so
如果你有一个向量 v
43
00:01:34,034 --> 00:01:36,016
let's say V equals one, two,
假如 v = [1 2 3 4]
44
00:01:36,030 --> 00:01:38,089
three, four, and you
假如 v = [1 2 3 4]
45
00:01:38,089 --> 00:01:40,830
type length V. What
然后键入 length(v)
46
00:01:40,830 --> 00:01:42,097
this does is it gives you
这个命令将返回
47
00:01:42,097 --> 00:01:44,123
the size of the longest dimension.
最大维度的大小
48
00:01:44,170 --> 00:01:45,609
So you can also type
你也可以键入 length(A)
49
00:01:45,609 --> 00:01:48,487
length A and because
由于矩阵 A
50
00:01:48,500 --> 00:01:49,856
A is a three by
是一个3×2的矩阵
51
00:01:49,860 --> 00:01:52,305
two matrix, the longer
因此最大的维度
52
00:01:52,330 --> 00:01:53,825
dimension is of size
应该是3
53
00:01:53,825 --> 00:01:56,145
three, so this should print out three.
因此该命令会返回3
54
00:01:56,145 --> 00:01:58,805
But usually we apply length only to vectors.
但通常我们还是对向量使用 length 命令
55
00:01:58,810 --> 00:02:00,194
So you know, length one, two,
比如 length([1;2;3;4;5])
56
00:02:00,200 --> 00:02:02,222
three, four, five, rather
比如 length([1;2;3;4;5])
57
00:02:02,230 --> 00:02:04,010
than apply length to matrices
而不是对矩阵使用 length 命令
58
00:02:04,010 --> 00:02:07,205
because that's a little more confusing.
因为毕竟有点容易让人弄混
59
00:02:07,620 --> 00:02:10,122
Now, let's look
下面让我们来看看
60
00:02:10,122 --> 00:02:11,843
at how the load data and
如何在系统中
61
00:02:11,860 --> 00:02:13,732
find data on the file system.
加载数据和寻找数据
62
00:02:13,732 --> 00:02:15,254
When we start an Octave
当我们打开 Octave 时
63
00:02:15,254 --> 00:02:16,882
we're usually, we're often in
我们通常已经在一个
64
00:02:16,920 --> 00:02:19,098
a path that
默认路径中
65
00:02:19,098 --> 00:02:21,738
is, you know, the location of where the Octave location is.
这个路径是 Octave 的安装位置
66
00:02:21,750 --> 00:02:24,042
So the PWD command shows
pwd 命令可以显示出
67
00:02:24,060 --> 00:02:25,619
the current directory, or the
Octave 当前所处路径
68
00:02:25,640 --> 00:02:28,738
current path that Octave is in.
Octave 当前所处路径
69
00:02:28,738 --> 00:02:31,932
So right now we're in this maybe somewhat off scale directory.
所以现在我们就在这个目录下
70
00:02:31,932 --> 00:02:33,999
The CD command stands
cd 命令
71
00:02:34,000 --> 00:02:35,322
for change directory, so I
意思是改变路径
72
00:02:35,330 --> 00:02:40,681
can go to C:/Users/Ang/Desktop, and
我可以把路径改为C:\Users\ang\Desktop
73
00:02:40,681 --> 00:02:43,657
now I'm in, you know, in my Desktop
这样当前目录就变为了桌面
74
00:02:43,657 --> 00:02:45,925
and if I type ls,
如果键入 ls
75
00:02:45,925 --> 00:02:49,447
ls is, it comes from a Unix or a Linux command.
ls 来自于一个 Unix 或者 Linux 命令
76
00:02:49,447 --> 00:02:50,648
But, ls will list the
ls 命令将列出
77
00:02:50,648 --> 00:02:52,435
directories on my desktop and
我桌面上的所有路径
78
00:02:52,435 --> 00:02:54,137
so these are the files
因此这些就是
79
00:02:54,140 --> 00:02:58,184
that are on my Desktop right now.
我桌面上的所有文件了
80
00:03:15,850 --> 00:03:17,838
In fact, on my desktop are
事实上 我的桌面上
81
00:03:17,838 --> 00:03:19,920
two files: Features X and
有两个文件
82
00:03:19,920 --> 00:03:21,689
Price Y that's maybe come
featuresX.dat 和 priceY.dat
83
00:03:21,689 --> 00:03:23,596
from a machine learning problem I want to solve.
是两个我想解决的机器学习问题
84
00:03:23,620 --> 00:03:25,830
So, here's my desktop.
这是我的桌面
85
00:03:25,830 --> 00:03:29,144
Here's Features X, and
这是 featuresX 文件
86
00:03:29,144 --> 00:03:31,598
Features X is this window,
featuresX 文件如这个窗口所示
87
00:03:31,630 --> 00:03:34,492
excuse me, is this file with two columns of data.
是一个含有两列数据的文件
88
00:03:34,492 --> 00:03:36,702
This is actually my housing prices data.
这其实就是我的房屋价格数据
89
00:03:36,750 --> 00:03:38,374
So I think, you know, I
我想应该是
90
00:03:38,374 --> 00:03:40,652
think I have forty-seven rows in this data set.
数据集中有47行
91
00:03:40,652 --> 00:03:42,344
And so the first house
第一个房子样本
92
00:03:42,350 --> 00:03:43,966
has size two hundred four
面积是2104平方英尺
93
00:03:43,970 --> 00:03:46,172
square feet, has three bedrooms; second
有3个卧室
94
00:03:46,190 --> 00:03:47,367
house has sixteen hundred square
第二套房子面积为1600
95
00:03:47,367 --> 00:03:49,862
feet, has three bedrooms; and so on.
有3个卧室 等等
96
00:03:49,880 --> 00:03:52,302
And Price Y is this
priceY 是这个文件
97
00:03:52,302 --> 00:03:55,020
file that has
也就是
98
00:03:55,040 --> 00:03:57,575
the prices of the data in my training set.
训练集中的价格数据
99
00:03:57,575 --> 00:03:59,735
So, Features X and
所以 featuresX 和
100
00:03:59,735 --> 00:04:03,061
Price Y are just text files with my data.
priceY 就是两个存放数据的文档
101
00:04:03,061 --> 00:04:04,770
How do I load this data into Octave?
那么应该怎样把数据读入 Octave 呢?
102
00:04:04,770 --> 00:04:06,050
Well, I just type
好的 我们只需要键
103
00:04:06,090 --> 00:04:08,163
the command load Features X dot
键入 featuresX.dat
104
00:04:08,163 --> 00:04:10,069
dat and if I
这样
105
00:04:10,069 --> 00:04:11,991
do that, I load the Features X
我将加载了 featuresX 文件
106
00:04:11,991 --> 00:04:15,772
and can load Price Y dot dat. And
同样地我可以加载 priceY.dat
107
00:04:15,772 --> 00:04:17,323
by the way, there are multiple ways to do this.
其实有好多种办法可以完成
108
00:04:17,323 --> 00:04:19,245
This command if you put
如果你把命令写成
109
00:04:19,245 --> 00:04:20,916
Features X dot dat on that
字符串的形式 load('featureX.dat')
110
00:04:20,916 --> 00:04:22,533
in strings and load it like so.
也是可以的
111
00:04:22,550 --> 00:04:25,477
This is a typo there.
这里打错了
112
00:04:25,490 --> 00:04:27,317
This is an equivalent command.
这跟刚才的命令效果是相同的
113
00:04:27,317 --> 00:04:29,334
So you can, this
只不过是把文件名
114
00:04:29,360 --> 00:04:31,985
way I'm just putting the file name of the string
写成了一个字符串的形式
115
00:04:32,000 --> 00:04:34,148
in the founding in a
现在文件名被存在一个
116
00:04:34,148 --> 00:04:35,716
string and in an
字符串中
117
00:04:35,716 --> 00:04:38,902
Octave use single quotes to
Octave 中使用引号
118
00:04:38,930 --> 00:04:41,876
represent strings, like so.
来表示字符串 就像这样
119
00:04:41,910 --> 00:04:42,837
So that's a string, and we
这就是一个字符串
120
00:04:42,860 --> 00:04:45,517
can load the file
因此我们读取的文件
121
00:04:45,517 --> 00:04:48,324
whose name is given by that string.
文件名由这个字符串给出
122
00:04:48,324 --> 00:04:50,919
Now the WHO command now
另外 who 命令
123
00:04:50,960 --> 00:04:52,538
shows me what variables I
能显示出 在我的 Octave
124
00:04:52,538 --> 00:04:54,605
have in my Octave workspace.
工作空间中的所有变量
125
00:04:54,605 --> 00:04:56,310
So Who shows me whether
因此 who 命令显示出
126
00:04:56,330 --> 00:04:59,952
the variables that Octave has in memory currently.
当前 Octave 储存的变量
127
00:04:59,952 --> 00:05:01,367
Features X and Price Y
包括 featureX 和 priceY
128
00:05:01,370 --> 00:05:02,991
are among them, as well as
同样还包括
129
00:05:02,991 --> 00:05:04,120
the variables that, you know,
在此之前你创建的
130
00:05:04,170 --> 00:05:06,311
we created earlier in this session.
那些变量
131
00:05:06,311 --> 00:05:09,198
So I can type Features X
所以我可以键入
132
00:05:09,198 --> 00:05:11,062
to display features X. And
featuresX 回车 来显示 featuresX
133
00:05:11,062 --> 00:05:14,164
there's my data.
这些就是存在里面的数据
134
00:05:14,200 --> 00:05:16,419
And I can type size features
还可以键入 size(featuresX)
135
00:05:16,419 --> 00:05:18,022
X and that's my
得出的结果是 47 2
136
00:05:18,022 --> 00:05:20,519
47 by two matrix.
代表这是一个47×2的矩阵
137
00:05:20,519 --> 00:05:22,307
And some of these size, press
类似地
138
00:05:22,320 --> 00:05:23,729
Y, that gives me
输入 size(priceY)
139
00:05:23,729 --> 00:05:26,753
my 47 by one vector.
结果是 47 1
140
00:05:26,753 --> 00:05:30,125
This is a 47 dimensional vector.
表示这是一个47维的向量
141
00:05:30,125 --> 00:05:32,080
This is all common vector that
是一个列矩阵
142
00:05:32,080 --> 00:05:35,231
has all the prices Y in my training set.
存放的是训练集中的所有价格 Y 的值
143
00:05:35,240 --> 00:05:37,584
Now the who function shows
who 函数能让你看到
144
00:05:37,600 --> 00:05:40,086
you one of the variables that, in the current workspace.
当前工作空间中的所有变量
145
00:05:40,086 --> 00:05:42,195
There's also the who S
同样还有另一个 whos 命令
146
00:05:42,195 --> 00:05:45,369
variable that gives you the detailed view.
能更详细地进行查看
147
00:05:45,369 --> 00:05:47,252
And so this also, with
因此
148
00:05:47,270 --> 00:05:48,574
an S at the end this also
在 who 后面加一个 s
149
00:05:48,574 --> 00:05:49,979
lists my variables except that it
同样也列出我所有的变量
150
00:05:49,979 --> 00:05:51,782
now lists the sizes as well.
不仅如此 还列出了变量的维度
151
00:05:51,790 --> 00:05:52,759
So A is a three by
我们看到 A 是一个
152
00:05:52,759 --> 00:05:54,764
two matrix and features
3×2的矩阵
153
00:05:54,764 --> 00:05:56,545
X as a 47 by 2 matrix.
X 是一个47×2的矩阵
154
00:05:56,545 --> 00:05:59,327
Price Y is a 47 by one matrix.
priceY 是一个47×1的矩阵
155
00:05:59,327 --> 00:06:01,098
Meaning this is just a vector.
也就是一个向量
156
00:06:01,130 --> 00:06:03,438
And it shows, you know, how many bytes of memory it's taking up.
同时还显示出 需要占用多少内存空间
157
00:06:03,438 --> 00:06:06,020
As well as what type of data this is.
以及数据类型是什么
158
00:06:06,020 --> 00:06:07,765
Double means double position floating
double 意思是双精度浮点型
159
00:06:07,765 --> 00:06:08,915
point so that just means that
这也就是说
160
00:06:08,915 --> 00:06:13,148
these are real values, the floating point numbers.
这些数都是实数 是浮点数
161
00:06:13,148 --> 00:06:14,190
Now if you want to get
如果你想删除某个变量
162
00:06:14,190 --> 00:06:17,316
rid of a variable you can use the clear command.
你可以使用 clear 命令
163
00:06:17,340 --> 00:06:21,124
So clear features X and type whose again.
因此 我们键入 clear featuresX
164
00:06:21,130 --> 00:06:23,448
You notice that the features X
然后再输入 whos 命令
165
00:06:23,448 --> 00:06:26,465
variable has now disappeared.
你会发现 featuresX 消失了
166
00:06:27,270 --> 00:06:28,567
And how do we save data?
另外 我们怎么储存数据呢?
167
00:06:28,567 --> 00:06:29,221
Let's see.
我们来看
168
00:06:29,221 --> 00:06:30,411
Let's take the variable V and
我们设变量 v
169
00:06:30,411 --> 00:06:33,075
say that it's a price Y 1 colon 10.
为 priceY(1:10)
170
00:06:33,075 --> 00:06:34,826
This sets V to be
这表示的是将向量 Y 的
171
00:06:34,826 --> 00:06:38,574
the first 10 elements of
前10个元素存入 v 中
172
00:06:38,860 --> 00:06:43,215
vector Y. So let's type who or whose.
我们输入 who 或者 whos
173
00:06:43,220 --> 00:06:46,612
Whereas Y was a 47 by 1 vector.
Y 是一个47×1的向量
174
00:06:46,612 --> 00:06:48,474
V is now 10 by 1.
因此现在 v 就是10×1的向量
175
00:06:48,474 --> 00:06:50,809
B equals price Y, one
因为刚才设置了
176
00:06:50,809 --> 00:06:52,451
column ten that sets it
v = priceY(1:10)
177
00:06:52,451 --> 00:06:53,520
to the just the first ten
这便将 v 的值
178
00:06:53,520 --> 00:06:55,705
elements of Y. Let's say
设为了 Y 的前十个元素
179
00:06:55,705 --> 00:06:57,398
I wanna save this to date to disc
假如我们想把它存入硬盘
180
00:06:57,398 --> 00:07:00,129
the command save, hello.mat
那么用 save hello.mat v 命令
181
00:07:00,129 --> 00:07:02,302
V. This will
这个命令
182
00:07:02,310 --> 00:07:04,357
save the variable V into
会将变量 v
183
00:07:04,370 --> 00:07:05,690
a file called hello.mat.
存成一个叫 hello.mat 的文件
184
00:07:05,720 --> 00:07:08,490
So let's do that.
让我们回车
185
00:07:08,640 --> 00:07:10,965
And now a file
现在我的桌面上
186
00:07:11,030 --> 00:07:13,181
has appeared on my Desktop, you
就出现了一个新文件
187
00:07:13,181 --> 00:07:15,066
know, called Hello.mat.
名为 hello.mat
188
00:07:15,066 --> 00:07:16,509
I happen to have MATLAB installed
由于我的电脑里
189
00:07:16,530 --> 00:07:17,962
in this window, which is why,
也同时安装了 MATLAB
190
00:07:17,962 --> 00:07:19,711
you know, this icon looks
所以这个图标
191
00:07:19,711 --> 00:07:21,621
like this because Windows is recognized
上面有 MATLAB 的标识
192
00:07:21,621 --> 00:07:23,559
as it's a MATLAB file,but don't
因为操作系统把文件识别为 MATLAB 文件
193
00:07:23,559 --> 00:07:24,882
worry about it if this file
所以如果在你的电脑上
194
00:07:24,890 --> 00:07:26,051
looks like it has a different
图标显示的不一样的话
195
00:07:26,051 --> 00:07:28,778
icon on your machine and
也没有关系
196
00:07:28,778 --> 00:07:31,017
let's say I clear all my variables.
现在我们清除所有变量
197
00:07:31,020 --> 00:07:32,602
So, if you type clear without
直接键入 clear
198
00:07:32,602 --> 00:07:36,061
anything then this actually deletes all of the variables in your workspace.
这样将删除工作空间中的所有变量
199
00:07:36,080 --> 00:07:39,078
So there's now nothing left in the workspace.
所以现在工作空间中啥都没了
200
00:07:39,078 --> 00:07:41,856
And if I load hello.mat,
但如果我载入 hello.mat 文件