forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3 - 4 - Matrix Matrix Multiplication (11 min).srt
1570 lines (1256 loc) · 27.5 KB
/
3 - 4 - Matrix Matrix Multiplication (11 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,190 --> 00:00:01,558
In this video we talk about
在这段视频中我们将会讨论
(字幕整理:中国海洋大学 黄海广,[email protected] )
2
00:00:01,558 --> 00:00:03,577
matrix, matrix multiplication or
矩阵 矩阵的乘法以及
3
00:00:03,580 --> 00:00:06,262
how to multiply two matrices together.
如何将两个矩阵相乘
4
00:00:06,590 --> 00:00:07,935
When we talk about the method
我们会使用这样一种方法
5
00:00:07,935 --> 00:00:09,412
in linear regression for how
在线性回归中用以解决
6
00:00:09,412 --> 00:00:11,251
to solve for the parameters,
参数计算的问题
7
00:00:11,251 --> 00:00:13,195
theta zero and theta one, all in one shot.
这种方法会把θ0、θ1等参数都放在一起来计算
8
00:00:13,195 --> 00:00:16,601
So, without needing an iterative algorithm like gradient descent.
也就是说 我们不需要一个迭代的梯度下降算法
9
00:00:16,601 --> 00:00:18,005
When we talk about that algorithm,
当我们谈到这个算法的时候
10
00:00:18,005 --> 00:00:19,982
it turns out that matrix, matrix
就会发现矩阵以及矩阵间的乘法运算
11
00:00:19,982 --> 00:00:23,086
multiplication is one of the key steps that you need to know.
是你必须理解的关键步骤之一
12
00:00:24,050 --> 00:00:27,885
So, let's, as usual, start with an example.
所以让我们像往常那样 从一个例子开始
13
00:00:28,790 --> 00:00:30,558
Let's say I have two matrices
比方说 我有两个矩阵
14
00:00:30,558 --> 00:00:33,060
and I want to multiply them together.
我想将它们相乘
15
00:00:33,060 --> 00:00:34,343
Let me again just reference this
让我先只是按照这个例子做一遍(乘法)
16
00:00:34,343 --> 00:00:37,441
example and then I'll tell you in a little bit what happens.
然后告诉你这其中运算的细节
17
00:00:38,000 --> 00:00:39,154
So, the first thing
那么 我要做的第一件事是
18
00:00:39,160 --> 00:00:40,589
I'm gonna do is, I'm going
我先把
19
00:00:40,589 --> 00:00:43,154
to pull out the first
右边这个矩阵的第一列
20
00:00:43,170 --> 00:00:45,545
column of this matrix on the right.
提取出来
21
00:00:46,340 --> 00:00:48,135
And I'm going to take this
然后我将会把
22
00:00:48,135 --> 00:00:49,163
matrix on the left and
左边的这个矩阵和
23
00:00:49,170 --> 00:00:52,385
multiply it by, you know, a vector.
之前取出来的这一列(前面提过的,向量)相乘
24
00:00:52,385 --> 00:00:55,188
That's just this first column, OK?
这只是第一列 是吧?
25
00:00:55,188 --> 00:00:56,385
And it turns out if I
然后我们可以看到 如果我
26
00:00:56,385 --> 00:00:59,067
do that I am going to get the vector 11, 9.
这么做 我就会得到向量(11,9)
27
00:00:59,070 --> 00:01:02,068
So, this is the same matrix
所以这是与上个视频的矩阵
28
00:01:02,068 --> 00:01:05,932
vector multiplication as you saw in the last videos.
和向量的乘法是一样的
29
00:01:05,950 --> 00:01:08,934
I worked this out in advance so, I know it's 11, 9.
我已经提前算出了这个结果 是(11,9)
30
00:01:08,934 --> 00:01:10,519
And, then, the second thing
那么 之后的第二件事
31
00:01:10,519 --> 00:01:12,811
I'm going to do is, I'm going
我要做的就是
32
00:01:12,811 --> 00:01:14,752
to pull out the second column,
我将把第二列再单独提出出来
33
00:01:14,752 --> 00:01:16,537
this matrix on the right and
右边这个矩阵的第二列
34
00:01:16,537 --> 00:01:18,575
I am then going to
然后我将要把它和
35
00:01:18,575 --> 00:01:20,174
take this matrix on the left,
左边这个矩阵相乘
36
00:01:20,174 --> 00:01:21,398
right, so, it will be that matrix,
是的吧 所以 这就是那个矩阵
37
00:01:21,410 --> 00:01:23,476
and multiply it by
用右边的第二列
38
00:01:23,480 --> 00:01:24,902
that second column on the right.
来乘以这个矩阵
39
00:01:24,902 --> 00:01:26,360
So, again, this is a matrix
因此 同样的 这是一个矩阵和
40
00:01:27,060 --> 00:01:28,960
vector multiplication set, which
向量的乘法运算 这
41
00:01:28,960 --> 00:01:30,643
you saw from the previous video, and
就是你从上一个视频所学到的
42
00:01:30,643 --> 00:01:31,623
it turns out that if you
如果你这么做
43
00:01:31,623 --> 00:01:32,768
multiply this matrix and this
把这个矩阵和这个向量相乘
44
00:01:32,780 --> 00:01:34,250
vector, you get 10,
你会得到
45
00:01:34,250 --> 00:01:36,214
14 and by
(10,14)这个结果
46
00:01:36,214 --> 00:01:37,472
the way, if you want to practice
顺便说一下 如果你想练习
47
00:01:37,472 --> 00:01:39,776
your matrix vector multiplication, feel
矩阵和向量的乘法运算
48
00:01:39,776 --> 00:01:42,810
free to pause the video and check this product yourself.
那么就先暂停下视频 自己算一算结果对不对
49
00:01:43,170 --> 00:01:44,248
Then, I'm just going
好吧 现在我仅仅需要
50
00:01:44,248 --> 00:01:45,743
to take these two results and
将得到的这两个结果放在一起
51
00:01:45,743 --> 00:01:48,398
put them together, and that will be my answer.
那么这就是我的答案了
52
00:01:48,400 --> 00:01:49,962
So, turns out the
那么 我们可以看到
53
00:01:49,962 --> 00:01:51,350
outcome of this product is going
计算结果是
54
00:01:51,350 --> 00:01:53,449
to be a 2 by 2 matrix, and
一个2 x 2的矩阵
55
00:01:53,449 --> 00:01:54,467
The way I am going to fill
我用来填充这个矩阵的方法
56
00:01:54,467 --> 00:01:56,294
in this matrix is just by
就是
57
00:01:56,294 --> 00:01:57,914
taking my elements 11,
把我的(11,9)
58
00:01:57,914 --> 00:02:00,137
9 and plugging them here, and
填在这里
59
00:02:00,140 --> 00:02:03,753
taking 10, 14 and plugging
把(10,14)填在
60
00:02:03,753 --> 00:02:06,386
them into the second column.
第二列
61
00:02:06,720 --> 00:02:06,720
Okay?
是的吧?
62
00:02:07,430 --> 00:02:08,824
So, that was the mechanics of
所以 这就是如何
63
00:02:08,824 --> 00:02:11,086
how to multiply a matrix by
将两个矩阵相乘的
64
00:02:11,086 --> 00:02:12,248
another matrix.
详细方法与过程
65
00:02:12,265 --> 00:02:14,094
You basically look at the
每次你只需要看
66
00:02:14,094 --> 00:02:17,045
second matrix one column at a time, and you assemble the answers.
第二个矩阵的一列 然后把你的答案拼凑起来
67
00:02:17,070 --> 00:02:18,199
And again, we will step
再次强调下 我们将一步步的来计算
68
00:02:18,199 --> 00:02:19,455
through this much more carefully in
几秒中的时间里需要非常仔细
69
00:02:19,455 --> 00:02:20,754
a second, but I just
但我也要指出
70
00:02:20,754 --> 00:02:22,852
want to point out also, this
我也要指出的是
71
00:02:22,852 --> 00:02:26,301
first example is a 2x3 matrix matrix.
第一个例子是一个2X3矩阵
72
00:02:26,301 --> 00:02:28,548
Multiplying that by a
乘以一个
73
00:02:28,550 --> 00:02:30,649
3x2 matrix, and the
3x2的矩阵 他们相乘
74
00:02:30,649 --> 00:02:32,497
outcome of this product, it
得到的结果
75
00:02:32,497 --> 00:02:35,518
turns out to be a 2x2
是一个2x2的
76
00:02:35,518 --> 00:02:36,802
matrix.
矩阵
77
00:02:36,802 --> 00:02:39,121
And again, we'll see in a second why this was the case.
我们将很快知道为什么是这个结果
78
00:02:39,122 --> 00:02:40,484
All right.
好的
79
00:02:40,790 --> 00:02:42,637
That was the mechanics of the calculation.
这是计算的技巧
80
00:02:42,637 --> 00:02:43,745
Let's actually look at the
让我们再看看
81
00:02:43,745 --> 00:02:44,953
details and look at what
这其中的细节
82
00:02:44,960 --> 00:02:46,305
exactly happened.
看看究竟发生了什么
83
00:02:46,305 --> 00:02:48,082
Here are details.
下面就是详细的过程
84
00:02:48,082 --> 00:02:49,471
I have a matrix A and
我有一个矩阵A
85
00:02:49,471 --> 00:02:51,325
I want to multiply that
我要把它乘以
86
00:02:51,350 --> 00:02:53,088
with a matrix B, and the result
矩阵B 其结果
87
00:02:53,088 --> 00:02:56,143
will be some new matrix C. And
会是一个新的矩阵C
88
00:02:56,143 --> 00:02:57,168
it turns out you can only
并且你会发现你只能
89
00:02:57,168 --> 00:02:59,238
multiply together matrices whose
相乘那些维度
90
00:02:59,238 --> 00:03:00,714
dimensions match so A
匹配的矩阵
91
00:03:00,714 --> 00:03:02,239
is an m by n matrix,
因此如果A是一个m×n的矩阵
92
00:03:02,240 --> 00:03:04,468
so m columns, n columns and
就是说m行n列
93
00:03:04,468 --> 00:03:05,394
I am going to multiply
我将要用它与
94
00:03:05,394 --> 00:03:06,480
that with an n by o
一个n×o的矩阵相乘
95
00:03:06,500 --> 00:03:08,232
and it turns out this n
并且实际上这里的n
96
00:03:08,232 --> 00:03:10,306
here must match this n
必须匹配这里的这个n
97
00:03:10,330 --> 00:03:11,978
here, so the number of columns
所以第一个矩阵的列的数目
98
00:03:11,978 --> 00:03:16,778
in first matrix must equal to the number of rows in second matrix.
必须等于第二矩阵中的行的数目
99
00:03:16,800 --> 00:03:18,035
And the result of this
并且相乘得到的结果
100
00:03:18,035 --> 00:03:20,639
product will be an M
结果会是一个m×o的矩阵
101
00:03:20,639 --> 00:03:25,204
by O matrix, like the the matrix C here.
就像这个矩阵C这样
102
00:03:25,390 --> 00:03:26,822
And, in the previous
并且 在前面的视频中
103
00:03:26,830 --> 00:03:28,743
video, everything we did corresponded
我们所做的一切都符合这个规则
104
00:03:28,770 --> 00:03:31,380
to this special case of OB
这是一种当矩阵B的o值
105
00:03:31,380 --> 00:03:32,588
equal to 1.
等于1的特殊情况(指的是矩阵和向量相乘)
106
00:03:32,588 --> 00:03:33,150
Okay?
明白了吗?
107
00:03:33,150 --> 00:03:35,469
That was, that was in case of B being a vector.
这是在B是一个向量的情况下
108
00:03:35,480 --> 00:03:36,522
But now, we are going to
但是现在 我们要处理
109
00:03:36,530 --> 00:03:39,805
view of the case of values of O larger than 1.
O的值大于1的情况
110
00:03:39,805 --> 00:03:41,533
So, here's how you
所以 这里就是你怎样
111
00:03:41,540 --> 00:03:44,564
multiply together the two matrices.
把两个矩阵相乘
112
00:03:44,564 --> 00:03:46,349
In order to get, what
为了得到结果
113
00:03:46,349 --> 00:03:47,775
I am going to do is
我要做的就是
114
00:03:47,775 --> 00:03:49,180
I am going to take the
我将要取
115
00:03:49,270 --> 00:03:52,025
first column of B
B矩阵的第一列
116
00:03:52,025 --> 00:03:53,782
and treat that as a vector,
把取出的这列看成一个向量
117
00:03:53,782 --> 00:03:56,098
and multiply the matrix A,
并乘以矩阵A
118
00:03:56,120 --> 00:03:57,909
with the first column of B,
用B矩阵的第一列
119
00:03:57,930 --> 00:03:59,632
and the result of that will
这个计算结果将是
120
00:03:59,632 --> 00:04:00,370
be a M by 1 vector,
m×1的矩阵(也就是一个向量)
121
00:04:00,400 --> 00:04:04,726
and we're going to put that over here.
我们把结果先放在这里
122
00:04:05,070 --> 00:04:06,481
Then, I'm going to
然后 我将要取
123
00:04:06,481 --> 00:04:09,048
take the second column
B矩阵的
124
00:04:09,048 --> 00:04:11,920
of B, right, so,
第二列
125
00:04:12,010 --> 00:04:13,775
this is another n by
那么我会又得到一个n×1的向量
126
00:04:13,790 --> 00:04:15,501
one vector, so, this column
也就是 这里的这一列
127
00:04:15,501 --> 00:04:16,690
here, this is right, n
这是正确的
128
00:04:16,690 --> 00:04:17,910
by one, those are n dimensional
n×1的矩阵 也就是n维的向量
129
00:04:17,910 --> 00:04:19,782
vector, gonna multiply this
我将要把这个矩阵
130
00:04:19,782 --> 00:04:21,678
matrix with this n by one vector.
和这些n乘1的向量相乘
131
00:04:21,678 --> 00:04:23,775
The result will be
其结果将是
132
00:04:23,775 --> 00:04:26,018
a M dimensional vector,
一个m维的向量
133
00:04:26,450 --> 00:04:28,035
which we'll put there.
然后我会把结果先放在那里
134
00:04:28,035 --> 00:04:29,273
And, so on.
依此类推
135
00:04:29,273 --> 00:04:30,035
Okay?
对吧?
136
00:04:30,035 --> 00:04:31,135
And, so, you know, and then
那么 你知道的
137
00:04:31,135 --> 00:04:32,099
I'm going to take the third
我开始取第三列
138
00:04:32,099 --> 00:04:33,475
column, multiply it by
把它和这个矩阵相乘
139
00:04:33,475 --> 00:04:37,507
this matrix, I get a M dimensional vector.
我又得到了一个M维向量
140
00:04:37,510 --> 00:04:39,368
And so on, until you get
依此类推 直到你计算到了
141
00:04:39,368 --> 00:04:40,610
to the last column times,
最后一列
142
00:04:40,610 --> 00:04:41,870
the matrix times the
矩阵乘以
143
00:04:41,950 --> 00:04:43,420
lost column gives you
你取到的最后一列
144
00:04:43,530 --> 00:04:45,757
the lost column of C.
就是C的最后一列
145
00:04:46,460 --> 00:04:48,808
Just to say that again.
再说一遍
146
00:04:49,310 --> 00:04:51,510
The ith column of the
矩阵C的第i列
147
00:04:51,600 --> 00:04:53,777
matrix C is attained
是根据把
148
00:04:53,810 --> 00:04:56,108
by taking the matrix A and
矩阵A与
149
00:04:56,110 --> 00:04:57,641
multiplying the matrix A with
矩阵B的第i列
150
00:04:57,660 --> 00:04:59,638
the ith column of the
相乘得到的
151
00:04:59,638 --> 00:05:01,539
matrix B for the values
结果
152
00:05:01,560 --> 00:05:03,387
of I equals 1, 2
依次相加
153
00:05:03,387 --> 00:05:04,936
up through O. Okay ?
从1,2到o依次相加的 对吧?
154
00:05:04,950 --> 00:05:06,752
So, this is just a summary
那么 我们在这里做一个总结
155
00:05:06,760 --> 00:05:08,765
of what we did up there
我们总结了我们为了
156
00:05:08,765 --> 00:05:10,163
in order to compute the matrix
计算矩阵C所做的步骤
157
00:05:10,163 --> 00:05:12,909
C. Let's look at just one more example.
让我们再看一个例子
158
00:05:12,940 --> 00:05:17,235
Let 's say, I want to multiply together these two matrices.
比方说我想把这两个矩阵相乘
159
00:05:17,235 --> 00:05:18,208
So, what I'm going to
那么我首先要做的是
160
00:05:18,208 --> 00:05:20,178
do is, first pull
先取出
161
00:05:20,178 --> 00:05:22,535
out the first column
我的第二个矩阵的
162
00:05:22,535 --> 00:05:24,370
of my second matrix, that
第一列
163
00:05:24,370 --> 00:05:26,185
was matrix B, that was
就是这个矩阵B 这就是
164
00:05:26,185 --> 00:05:29,133
my matrix B on the previous slide.
上一张幻灯片上出现的矩阵B
165
00:05:29,160 --> 00:05:30,660
And, I therefore, have this
因此 我就这么
166
00:05:30,660 --> 00:05:32,917
matrix times my vector and
用矩阵和我取的向量相乘
167
00:05:32,920 --> 00:05:35,350
so, oh, let's do this calculation quickly.
所以 让我们快速的计算这个结果
168
00:05:35,350 --> 00:05:37,518
There's going to be equal to,
这等于
169
00:05:37,518 --> 00:05:39,048
right, 1, 3 times 0,
没错 (1,3)乘以(0,3)
170
00:05:39,048 --> 00:05:41,238
3 so that gives 1
所以 就是
171
00:05:41,270 --> 00:05:45,930
times 0, plus 3 times 3.
1x0+3x3(9)
172
00:05:45,930 --> 00:05:48,322
And, the second element
此外 第二元素
173
00:05:48,322 --> 00:05:49,530
is going to be 2,
就是(2,5)
174
00:05:49,530 --> 00:05:51,678
5 times 0, 3 so, that's going to
乘以(0,3)
175
00:05:51,678 --> 00:05:52,739
be two times 0 plus 5
就是0x2+5x3(15)
176
00:05:52,740 --> 00:05:57,276
times 3 and that is
那么结果出来了
177
00:05:57,276 --> 00:06:02,242
9,15, actually didn't
(9,15)实际上该用绿色的颜色标记
178
00:06:02,242 --> 00:06:03,672
write that in green, so this
所以这就是(9.15)
179
00:06:03,672 --> 00:06:09,365
is nine fifteen, and then mix.
那么
180
00:06:09,365 --> 00:06:12,061
I am going to pull out
我将同样的取出
181
00:06:12,090 --> 00:06:14,451
the second column of this,
这个的第二列
182
00:06:14,451 --> 00:06:16,174
and do the corresponding
做相同的计算
183
00:06:16,190 --> 00:06:18,170
calculation so there's this
所以
184
00:06:18,200 --> 00:06:20,477
matrix times this vector 1, 2.
这是这个矩阵乘以(1,2)
185
00:06:20,477 --> 00:06:22,288
Let's also do this
让我们快点算吧
186
00:06:22,290 --> 00:06:23,814
quickly, so that's one times
所以这是
187
00:06:23,814 --> 00:06:27,362
one plus three times two.
1x1 + 3x2
188
00:06:27,362 --> 00:06:28,973
So that deals with that
那么这就处理了这一行
189
00:06:28,973 --> 00:06:30,868
row, let's do the
让我们计算另一行
190
00:06:30,868 --> 00:06:34,223
other one, so let's see,
让我们来看看
191
00:06:34,223 --> 00:06:37,510
that gives me two times
这次是
192
00:06:37,510 --> 00:06:41,926
one plus times two,
2x1 + 5x2
193
00:06:41,926 --> 00:06:43,493
so that is going to
因此这就等于
194
00:06:43,493 --> 00:06:46,176
be equal to, let's see,
我们看一下
195
00:06:46,176 --> 00:06:47,464
one times one plus three times
1x1 + 3x1结果是4
196
00:06:47,464 --> 00:06:50,378
one is four and two
2x1 + 5x2
197
00:06:50,378 --> 00:06:52,282
times one plus five times two
结果是
198
00:06:52,282 --> 00:06:53,923
is twelve.
199
00:06:55,570 --> 00:06:56,660
So now I have these two
所以现在我有两个这个了
200
00:06:56,660 --> 00:06:58,448
you, and so my
因此我得到的