forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path17 - 5 - Online Learning (13 min).srt
2025 lines (1620 loc) · 38.3 KB
/
17 - 5 - Online Learning (13 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,109 --> 00:00:02,030
In this video, I'd like to talk
在这个视频中 我将会
2
00:00:02,030 --> 00:00:03,738
about a new large-scale
讨论一种新的大规模的
3
00:00:03,738 --> 00:00:05,369
machine learning setting called
机器学习机制 叫做
4
00:00:05,369 --> 00:00:07,073
the online learning setting.
在线学习机制
5
00:00:07,442 --> 00:00:08,731
The online learning setting
在线学习机制
6
00:00:08,731 --> 00:00:10,659
allows us to model problems
让我们可以模型化问题
7
00:00:10,659 --> 00:00:12,074
where we have a continuous flood
在拥有连续一波数据
8
00:00:12,074 --> 00:00:14,064
or a continuous stream of data
或连续的数据流涌进来
9
00:00:14,064 --> 00:00:15,906
coming in and we would like
而我们又需要
10
00:00:15,906 --> 00:00:17,839
an algorithm to learn from that.
一个算法来从中学习的时候来模型化问题
11
00:00:18,762 --> 00:00:20,759
Today, many of the largest
今天 许多大型网站
12
00:00:20,759 --> 00:00:22,245
websites, or many of the largest
或者许多大型网络公司
13
00:00:22,245 --> 00:00:24,335
website companies use different
使用不同版本的
14
00:00:24,335 --> 00:00:25,901
versions of online learning
在线学习机制算法
15
00:00:25,901 --> 00:00:28,102
algorithms to learn from
从大批的涌入
16
00:00:28,117 --> 00:00:29,468
the flood of users that keep
又离开网站的用户身上
17
00:00:29,468 --> 00:00:31,370
on coming to, back to the website.
进行学习
18
00:00:31,370 --> 00:00:32,943
Specifically, if you have
特别要提及的是 如果你有
19
00:00:32,943 --> 00:00:34,992
a continuous stream of data
一个由连续的用户流引发的
20
00:00:34,992 --> 00:00:36,371
generated by a continuous
连续的数据流
21
00:00:36,371 --> 00:00:37,703
stream of users coming to
进入
22
00:00:37,703 --> 00:00:39,413
your website, what you can
你的网站
23
00:00:39,413 --> 00:00:40,844
do is sometimes use an
你能做的是使用一个
24
00:00:40,844 --> 00:00:42,632
online learning algorithm to learn
在线学习机制 从数据流中学习
25
00:00:42,632 --> 00:00:44,492
user preferences from the
用户的偏好
26
00:00:44,492 --> 00:00:46,324
stream of data and use that
然后使用这些信息
27
00:00:46,324 --> 00:00:47,470
to optimize some of the
来优化一些
28
00:00:47,470 --> 00:00:49,632
decisions on your website.
关于网站的决策
29
00:00:52,063 --> 00:00:54,506
Suppose you run a shipping service,
假定你有一个提供运输服务的公司
30
00:00:54,506 --> 00:00:56,163
so, you know, users come and ask
所以你知道 用户们来向你询问
31
00:00:56,163 --> 00:00:57,307
you to help ship their package from
把包裹从A地
32
00:00:57,307 --> 00:01:01,533
location A to location B and suppose
运到B地的服务
33
00:01:01,533 --> 00:01:02,717
you run a website, where users
同时假定你有一个网站
34
00:01:02,717 --> 00:01:04,110
repeatedly come and they
让用户们可多次登陆
35
00:01:04,110 --> 00:01:05,689
tell you where they want
然后他们告诉你
36
00:01:05,689 --> 00:01:07,291
to send the package from, and
他们想从哪里寄出包裹 以及
37
00:01:07,291 --> 00:01:08,523
where they want to send it to
包裹要寄到哪里去
38
00:01:08,523 --> 00:01:10,947
(so the origin and destination) and
也就是出发地与目的地
39
00:01:10,947 --> 00:01:12,748
your website offers to ship the package
然后你的网站开出运输包裹的
40
00:01:12,748 --> 00:01:14,515
for some asking price,
的服务价格
41
00:01:14,515 --> 00:01:16,092
so I'll ship your package for $50,
比如 我会收取$50来运输你的包裹
42
00:01:16,092 --> 00:01:17,926
I'll ship it for $20.
我会收取$20之类的
43
00:01:17,926 --> 00:01:19,343
And based on the price
然后根据
44
00:01:19,343 --> 00:01:20,922
that you offer to the users,
你开给用户的这个价格
45
00:01:20,922 --> 00:01:23,522
the users sometimes chose to use a shipping service;
用户有时会接受这个运输服务
46
00:01:23,522 --> 00:01:25,891
that's a positive example and
那么这就是个正样本
47
00:01:25,891 --> 00:01:28,168
sometimes they go away and
有时他们会走掉
48
00:01:28,168 --> 00:01:29,722
they do not choose to
然后他们拒绝
49
00:01:29,722 --> 00:01:31,719
purchase your shipping service.
购买你的运输服务
50
00:01:31,719 --> 00:01:34,552
So let's say that we want
所以 让我们假定我们想要一个
51
00:01:34,552 --> 00:01:36,386
a learning algorithm to help us
学习算法来帮助我们
52
00:01:36,386 --> 00:01:38,499
to optimize what is the asking
优化我们想给用户
53
00:01:38,499 --> 00:01:41,680
price that we want to offer to our users.
开出的价格
54
00:01:41,680 --> 00:01:43,724
And specifically, let's say we
而且特别的是 我们假定
55
00:01:43,724 --> 00:01:44,908
come up with some sort of features
我们找到了一些
56
00:01:44,908 --> 00:01:46,510
that capture properties of the users.
获取用户特点的方法
57
00:01:46,510 --> 00:01:49,376
If we know anything about the demographics,
如果我们知道一些用户的统计信息
58
00:01:49,376 --> 00:01:50,875
they capture, you know, the origin and
它们会获取 比如 包裹的起始地
59
00:01:50,875 --> 00:01:54,405
destination of the package, where they want to ship the package.
以及目的地 他们想把包裹运到哪里去
60
00:01:54,405 --> 00:01:55,635
And what is the price
以及我们提供给他们的
61
00:01:55,635 --> 00:01:57,911
that we offer to them for shipping the package.
运送包裹的价格
62
00:01:57,911 --> 00:01:59,931
and what we want to do
我们想要做的就是
63
00:01:59,931 --> 00:02:00,883
is learn what is the
学习
64
00:02:00,883 --> 00:02:02,439
probability that they will
在给出的价格下他们将会
65
00:02:02,439 --> 00:02:03,762
elect to ship the
选择
66
00:02:03,762 --> 00:02:05,457
package, using our
运输包裹的几率
67
00:02:05,457 --> 00:02:07,315
shipping service given these features, and
在已知用户特点的前提下 并且
68
00:02:07,315 --> 00:02:10,197
again just as a reminder these
我要再次指出
69
00:02:10,197 --> 00:02:14,121
features X also captures the price that we're asking for.
他们也同时获取了我们开出的价格
70
00:02:14,121 --> 00:02:15,790
And so if we could
所以如果我们可以
71
00:02:15,790 --> 00:02:17,486
estimate the chance that they'll
估计出用户选择
72
00:02:17,486 --> 00:02:19,629
agree to use our service
使用我们的服务时
73
00:02:19,629 --> 00:02:20,962
for any given price, then we
我们所开出的价格 那么我们
74
00:02:20,962 --> 00:02:21,967
can try to pick
可以试着去选择
75
00:02:21,967 --> 00:02:23,183
a price so that they
一个优化的价格 因而在这个价格下
76
00:02:23,183 --> 00:02:25,125
have a pretty high probability of
用户会有很大的可能性
77
00:02:25,125 --> 00:02:27,841
choosing our website while simultaneously
选择我们的网站
78
00:02:27,841 --> 00:02:29,188
hopefully offering us a
而且同时很有可能会提供给我们
79
00:02:29,188 --> 00:02:31,371
fair return, offering us
一个合适的回报 让我们
80
00:02:31,371 --> 00:02:34,293
a fair profit for shipping their package.
在提供运输服务时也能获得合适的利润
81
00:02:34,585 --> 00:02:36,489
So if we can learn this property
所以如果我们可以学习
82
00:02:36,489 --> 00:02:37,733
of y equals 1 given
y 等于 1 时的条件
83
00:02:37,733 --> 00:02:38,632
any price and given the other
在任何给定价格以及其他给定的
84
00:02:38,632 --> 00:02:39,660
features we could really
条件下y等于1的特征
85
00:02:39,660 --> 00:02:41,657
use this to choose appropriate
我们就真的可以利用这一些信息
86
00:02:41,657 --> 00:02:44,072
prices as new users come to us.
在新用户来的时候选择合适的价格
87
00:02:44,072 --> 00:02:45,907
So in order to model
所以为了
88
00:02:45,907 --> 00:02:47,277
the probability of y equals 1,
获得 y 等于 1 的概率的模型
89
00:02:47,277 --> 00:02:48,972
what we can do is use
我们能做的就是
90
00:02:48,972 --> 00:02:51,781
logistic regression or neural
用逻辑回归或者神经网络
91
00:02:51,781 --> 00:02:53,756
network or some other algorithm like that.
或者其他一些类似的算法
92
00:02:53,756 --> 00:02:55,889
But let's start with logistic regression.
但现在我们先来考虑逻辑回归
93
00:02:57,658 --> 00:02:59,583
Now if you have a
现在假定你有一个
94
00:02:59,583 --> 00:03:01,835
website that just runs continuously,
连续运行的网站
95
00:03:01,835 --> 00:03:05,342
here's what an online learning algorithm would do.
以下就是在线学习算法要做的
96
00:03:05,342 --> 00:03:07,478
I'm gonna write repeat forever.
我要写下"一直重复"
97
00:03:07,478 --> 00:03:09,730
This just means that our website
这只是代表着我们的网站
98
00:03:09,730 --> 00:03:11,170
is going to, you know, keep on
将会一直继续
99
00:03:11,170 --> 00:03:12,911
staying up.
保持在线学习
100
00:03:12,911 --> 00:03:14,351
What happens on the website is
这个网站将要发生的是
101
00:03:14,351 --> 00:03:16,465
occasionally a user
一个用户
102
00:03:16,465 --> 00:03:17,950
will come and for
偶然访问
103
00:03:17,950 --> 00:03:19,576
the user that comes we'll get
然后我们将会得到
104
00:03:19,576 --> 00:03:25,380
some x,y pair corresponding to
与其对应的一些(x,y)对
105
00:03:25,380 --> 00:03:29,096
a customer or to a user on the website.
这些(x,y)对是相对应于一个特定的客户或用户的
106
00:03:29,096 --> 00:03:30,884
So the features x are, you
所以特征 x 是指
107
00:03:30,884 --> 00:03:32,811
know, the origin and destination specified
客户所指定的起始地与目的地
108
00:03:32,811 --> 00:03:34,111
by this user and the price
以及
109
00:03:34,111 --> 00:03:35,358
that we happened to offer to
我们这一次提供
110
00:03:35,358 --> 00:03:37,292
them this time around, and
给客户的价格
111
00:03:37,292 --> 00:03:38,430
y is either one or
而y则取1或0
112
00:03:38,430 --> 00:03:40,148
zero depending one whether or
y值取决于
113
00:03:40,148 --> 00:03:41,518
not they chose to
客户是否选择了
114
00:03:41,518 --> 00:03:43,980
use our shipping service.
使用我们的运输服务
115
00:03:43,980 --> 00:03:45,419
Now once we get this {x,y}
现在我们一旦获得了这个{x,y}数据对
116
00:03:45,419 --> 00:03:46,813
pair, what an online
在线学习算法
117
00:03:46,813 --> 00:03:48,391
learning algorithm does is then
要做的就是
118
00:03:48,391 --> 00:03:50,690
update the parameters theta
更新参数θ
119
00:03:50,690 --> 00:03:54,011
using just this example
利用刚得到的(x,y)数据对来更新θ
120
00:03:54,011 --> 00:03:57,726
x,y, and in particular
具体来说
121
00:03:57,726 --> 00:03:59,839
we would update my parameters theta
我们将这样更新我们的参数θ
122
00:03:59,839 --> 00:04:01,842
as Theta j get updated as Theta j
θj 将会被更新为
123
00:04:01,842 --> 00:04:06,619
minus the learning rate alpha times
θj 减去学习率 α 乘以
124
00:04:06,619 --> 00:04:11,356
my usual gradient descent
梯度下降
125
00:04:11,356 --> 00:04:13,399
rule for logistic regression.
来做逻辑回归
126
00:04:13,399 --> 00:04:14,491
So we do this for j
然后我们对j等于0到n
127
00:04:14,491 --> 00:04:15,652
equals zero up to n,
重复这个步骤
128
00:04:15,652 --> 00:04:19,088
and that's my close curly brace.
这是我的另一边花括号
129
00:04:19,088 --> 00:04:21,218
So, for other learning algorithms
所以对于其他的学习算法
130
00:04:21,218 --> 00:04:22,873
instead of writing X-Y, right, I
不是写(x,y)对 对吧
131
00:04:22,873 --> 00:04:24,011
was writing things like Xi,
我之前写的是
132
00:04:24,011 --> 00:04:26,495
Yi but
(x(i),y(i)) 一样的数据对
133
00:04:26,495 --> 00:04:27,842
in this online learning setting
但在这个在线学习机制中
134
00:04:27,842 --> 00:04:29,723
where actually discarding the notion
我们实际上丢弃了
135
00:04:29,723 --> 00:04:31,464
of there being a fixed training
获取一个固定的数据集这样的概念
136
00:04:31,464 --> 00:04:32,904
set instead we have an algorithm.
取而代之的是 我们拥有一个算法
137
00:04:32,904 --> 00:04:34,924
Now what happens as we get
现在 当我们
138
00:04:34,924 --> 00:04:37,014
an example and then we
获取一个样本 然后我们
139
00:04:37,014 --> 00:04:38,825
learn using that example like
利用那个样本获取信息学习
140
00:04:38,825 --> 00:04:41,031
so and then we throw that example away.
然后我们丢弃这个样本
141
00:04:41,031 --> 00:04:43,098
We discard that example and we
我们丢弃那个样本 而且我们
142
00:04:43,098 --> 00:04:45,141
never use it again and
永远不会再使用它
143
00:04:45,141 --> 00:04:47,161
so that's why we just look at one example at a time.
这就是为什么我们在一个时间点只会处理一个样本的原因
144
00:04:47,161 --> 00:04:48,879
We learn from that example.
我们从样本中学习
145
00:04:48,879 --> 00:04:50,412
We discard it.
我们再丢弃它
146
00:04:50,412 --> 00:04:51,527
Which is why, you know, we're
这也就是为什么
147
00:04:51,527 --> 00:04:52,943
also doing away with this
我们放弃了一种拥有
148
00:04:52,943 --> 00:04:54,615
notion of there being this
我们放弃了一种拥有
149
00:04:54,615 --> 00:04:58,191
sort of fixed training set indexed by i.
固定的 由 i 来作参数的数据集的表示方法
150
00:04:58,191 --> 00:04:59,328
And, if you really run
而且 如果你真的运行
151
00:04:59,328 --> 00:05:01,488
a major website where you
一个大型网站
152
00:05:01,488 --> 00:05:03,624
really have a continuous stream
在这个网站里你有一个连续的
153
00:05:03,624 --> 00:05:05,737
of users coming, then this
用户流登陆网站 那么
154
00:05:05,737 --> 00:05:07,525
sort of online learning algorithm
这种在线学习算法
155
00:05:07,525 --> 00:05:10,358
is actually a pretty reasonable algorithm.
是一种非常合理的算法
156
00:05:10,358 --> 00:05:12,076
Because of data is essentially
因为数据本质上是自由的
157
00:05:12,076 --> 00:05:13,330
free if you have so
如果你有如此多的数据
158
00:05:13,330 --> 00:05:14,979
much data, that data
而数据
159
00:05:14,979 --> 00:05:17,022
is essentially unlimited then there
本质上是无限的 那么
160
00:05:17,022 --> 00:05:17,997
is really may be no
或许就真的没必要
161
00:05:17,997 --> 00:05:18,949
need to look at a
重复处理
162
00:05:18,949 --> 00:05:21,527
training example more than once.
一个样本
163
00:05:21,527 --> 00:05:22,432
Of course if we had only
当然 如果我们只有
164
00:05:22,432 --> 00:05:24,220
a small number of users then
少量的用户
165
00:05:24,220 --> 00:05:26,333
rather than using an online learning
那么我们就不选择像这样的在线学习算法
166
00:05:26,333 --> 00:05:27,912
algorithm like this, you might
你可能最好是要
167
00:05:27,912 --> 00:05:29,421
be better off saving away all
保存好所有的
168
00:05:29,421 --> 00:05:30,884
your data in a fixed training
数据 保存在一个固定的
169
00:05:30,884 --> 00:05:34,042
set and then running some algorithm over that training set.
数据集里 然后对这个数据集使用某种算法
170
00:05:34,042 --> 00:05:35,018
But if you really have a continuous
但是 如果你确实有一个连续的
171
00:05:35,018 --> 00:05:36,341
stream of data, then an
数据流 那么一个
172
00:05:36,341 --> 00:05:39,881
online learning algorithm can be very effective.
在线学习机制会非常的有效
173
00:05:39,881 --> 00:05:41,171
I should mention also that one
我也必须要提到一个
174
00:05:41,171 --> 00:05:43,015
interesting effect of this sort
这种在线学习算法
175
00:05:43,015 --> 00:05:44,073
of online learning algorithm is
会带来的有趣的效果 那就是
176
00:05:44,073 --> 00:05:49,391
that it can adapt to changing user preferences.
它可以对正在变化的用户偏好进行调适
177
00:05:51,006 --> 00:05:54,592
And in particular, if over
而且特别的 如果
178
00:05:54,592 --> 00:05:55,776
time because of changes in
随着时间变化 因为
179
00:05:55,776 --> 00:05:58,377
the economy maybe users
大的经济环境发生变化 用户们可能会
180
00:05:58,377 --> 00:05:59,957
start to become more price
开始变得对价格更敏感
181
00:05:59,957 --> 00:06:01,395
sensitive and willing to pay,
然后愿意支付
182
00:06:01,395 --> 00:06:03,717
you know, less willing to pay high prices.
你知道的 不那么愿意支付高的费用
183
00:06:03,717 --> 00:06:06,527
Or if they become less price sensitive and they're willing to pay higher prices.
也有可能他们变得对价格不那么敏感 然后他们愿意支付更高的价格
184
00:06:06,527 --> 00:06:08,292
Or if different things
又或者各种因素
185
00:06:08,292 --> 00:06:10,451
become more important to users,
变得对用户的影响更大了
186
00:06:10,451 --> 00:06:11,496
if you start to have new
如果你开始拥有
187
00:06:11,496 --> 00:06:12,587
types of users coming to your website.
某一种新的类型的用户涌入你的网站
188
00:06:12,587 --> 00:06:14,933
This sort of online learning algorithm
这样的在线学习算法
189
00:06:14,933 --> 00:06:17,278
can also adapt to changing
也可以根据变化着的
190
00:06:17,278 --> 00:06:18,950
user preferences and kind
用户偏好进行调适
191
00:06:18,950 --> 00:06:20,157
of keep track of what your
而且从某种程度上可以跟进
192
00:06:20,157 --> 00:06:21,991
changing population of users
变化着的用户群体所愿意
193
00:06:21,991 --> 00:06:24,685
may be willing to pay for.
支付的价格
194
00:06:24,685 --> 00:06:26,171
And it does that because if
而且 在线学习算法有这样的作用是因为
195
00:06:26,171 --> 00:06:28,168
your pool of users changes,
如果你的用户群变化了
196
00:06:28,168 --> 00:06:29,793
then these updates to your
那么参数θ的变化与更新
197
00:06:29,793 --> 00:06:31,953
parameters theta will just slowly adapt
会逐渐调适到
198
00:06:31,953 --> 00:06:33,555
your parameters to whatever your
你最新的用户群所应该体现出来的
199
00:06:33,555 --> 00:06:36,599
latest pool of users looks like.
参数
200
00:06:36,599 --> 00:06:37,781
Here's another example of a
这里有另一个