-
Notifications
You must be signed in to change notification settings - Fork 0
/
reed-college-biostats-talk.html
566 lines (370 loc) · 18.4 KB
/
reed-college-biostats-talk.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>How to bring your passion for statistics and programming to a career in biostatistics</title>
<meta charset="utf-8" />
<meta name="author" content="Monica Gerber, MPH" />
<meta name="date" content="2021-03-23" />
<link rel="stylesheet" href="xaringan-themer.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
# How to bring your passion for statistics and programming to a career in biostatistics
### Monica Gerber, MPH
### Fred Hutch, Seattle, WA
### March 23, 2021
---
# Hello!
.pull-left[
My name is **Monica Gerber**.
I graduated from Reed in 2011 with a degree in anthropology. I also studied a lot of Spanish, science, and even some math!
In 2015 I received a Master in Public Health (MPH) from Boston University.
Now I am a biostatistician at Fred Hutch in the Statistical Center for HIV/AIDS Research and Prevention (S[CHARP](https://www.fredhutch.org/en/research/divisions/vaccine-infectious-disease-division/research/biostatistics-bioinformatics-and-epidemiology/statistical-center-for-hiv-aids-research-and-prevention.html)).
]
.pull-right[
![picture of monica](avatar.jpg)
]
---
# What can I help you with?
❓ What exactly is biostatistics?
📚 What are grad school options for studying biostatistics?
🎓 What do I do with a degree in biostatistics?
☀️ How do I gain exposure to this field? How do I know this is for me?
👩💻 What's your job like?
*And if I don't know, I can help you find out.*
---
# What is biostatistics?
Wikipedia says:
> The development and application of statistical methods to a wide range of topics in biology.
... and medicine and public health.
It's the tools and techniques for collecting data, then summarizing, analyzing, and interpreting results.
Biostatisticians *may* be more interested in the data and subject matter, and statisticians *may* be more interested in mathematical theory.
???
Usually the objective is to make an inference about a population by studying a subset of that population.
---
# An Example: HIV/AIDS pandemic
.pull-left[
* 38 million people living with HIV/AIDS worldwide
* 1.7 million new infections every year
* About 1.2 million people living with HIV/AIDS in the US
Source: hiv.gov, [Nature](https://www.nature.com/collections/qdtpvmnnqj)
]
.pull-right[
![hiv-virus](images/hiv-virus.jpg)
]
---
# Impact in the United States
<img src="images/hiv-prevalence-heatmap.jpg" width="80%" />
Diagnosed HIV prevalence by US county, 2018. Source: [The Lancet](https://www.thelancet.com/series/HIVinUSA).
---
# Impact in the United States
<img src="images/hiv-prevalence-scatterplot.jpg" width="62%" />
Scatterplot of HIV prevalence by US county population stratified by US Census region, 2018. For counties with populations of less than 50,000. Southern counties (blue dots) are more likely to have high HIV prevalence than the west (red), northeast (green), and midwest (purple). Source: [The Lancet](https://www.thelancet.com/series/HIVinUSA).
---
# Recent developments in treatment and prevention
.pull-left[
<img src="images/headline-vaginal-ring.png" width="90%" /><img src="images/aspire-vaginal-ring.jpg" width="90%" />
]
.pull-right[
<img src="images/headline-cabotegravir.png" width="90%" /><img src="images/syringe.jpg" width="90%" />
]
---
# Health disparities in the United States
<img src="images/nytimes-death-rates.png" width="62%" /><img src="images/nytimes-hidden-epidemic.png" width="62%" /><img src="images/nytimes-trump-hiv.png" width="62%" />
???
HIV has a disproportionate impact on certain populations, especially among racial and ethnic minorities and gay and bisexual men.
This is built on historical social injustices.
Also underlying is unequal access to healthcare.
Articles:
https://www.nytimes.com/2019/03/16/opinion/sunday/trump-pence-hiv.html
https://www.nytimes.com/2020/11/19/health/hiv-aids-death-rates-cdc.html
---
# Back to biostatistics
.pull-left[
<img src="images/reading-nytimes.jpg" width="100%" />
]
.pull-right[
* How are these studies conducted?
* How do we know the extent of a disease?
* How do we detect new disease and understand progression?
* How do we study the effectiveness of drugs?
* What do we do with contradictory results?
]
Photo by <a href="https://unsplash.com/@thecreative_exchange?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">The Creative Exchange</a> on <a href="/s/photos/reading-newspaper?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
---
# Biostaticians may specialize in:
🧬 **Genetics**: why are some people with a particular genetic mutation less susceptiple to HIV?
🔬 **Genomics**: how is the HIV virus evolving over time and place?
🌏 **Epidemiology**: what is the distribution of HIV? What are the causes of HIV acquisition?
💻 **Electronic health records**: how do we use EHRs and Medicaid/Medicare data to understand disparities in care?
Also: computational biology, neuroscience, clincial trial design, risk analysis, clinical decision making, environmental health, health policy.
---
# Career Paths
.pull-left[
* **Academia** ➡️ universities, research institutes (staff and faculty)
* **Industry** ➡️ pharma, biotech, consulting, tech
* **Non-profit & Foundations** ➡️ global health, granting organizations
* **Health care** ➡️ Hospitals, insurance companies, community health centers
* **Government** ➡️ CDC, NIH FDA, U.S Digital Service, local health departments
* Many other routes that require data science skills.
]
.pull-right[
<img src="images/working-at-computer.jpg" width="80%" />
Photo by <a href="https://unsplash.com/@priscilladupreez?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Priscilla Du Preez</a> on <a href="/s/photos/working-at-computer-asian?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
]
---
# Working at SCHARP
<img src="images/SCHARP_logo.jpg" width="40%" />
* Analysis to inform regimen dose and scheduling for Phase I clinical trials for **HIV vaccines**.
* Collaborate with Johns Hopkins University and PATH to develop statistical methods for comparing candidate monoclonal antibodies for prevention of **malaria**.
* Develop **pharmacokinetic models** to understand the distribution and elimination of broadly neutralizing antibodies in development for the passive prevention and treatment of HIV.
* Correlates analysis for non-human primate **schistosomiasis vaccine study**.
Previously:
* Population mental health, pediatric obesity, community health program evaluation
---
.pull-left[
### What people think I do
<img src="images/numbers.jpg" width="90%" />
Model building and statistical testing
Excel
Stare at numbers
?
]
.pull.right[
### What I actually do
<img src="images/whiteboard.jpg" width="40%" />
Also data munging and EDA
R, SQL, git/GitHub
Software development
A lot of writing
]
???
Photo by <a href="https://unsplash.com/@kaleidico?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Kaleidico</a> on <a href="/s/photos/collaboration?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
Photo by <a href="https://unsplash.com/@mbaumi?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Mika Baumeister</a> on <a href="/s/photos/excel-sheets?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
---
.pull-left[
## Pros 👍
* Flexibility
* Low stress
* Continuous learning
* Opportunities to grow
* Ability to jump around to different topics and applications
]
.pull-left[
## Cons 👎
* Screen time
* Utilizes only certain kinds of creativity (maybe)
* Lots of prep work and communication (it's not doing statistics and coding all day)
* Some rigidity in qualifications
]
---
# Grad School Options
#### The MPH
A more applied degree
<img src="images/field-work.jpg" width="60%" />
Photo by <a href="https://unsplash.com/@ssmith9?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Susan Smith</a> on <a href="/s/photos/field-work?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
---
# Grad School Options
#### The MS
A more technical degree
<img src="images/microscopes.jpg" width="60%" />
Photo by <a href="https://unsplash.com/@saralea?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Sara Cottle</a> on <a href="/s/photos/looking-through-microscope?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
---
# Grad School Options
#### The PhD
If you want to be more specialized or become an academic
<img src="images/lab-microscope.jpg" width="60%" />
Photo by <a href="https://unsplash.com/@thisisengineering?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">ThisisEngineering RAEng</a> on <a href="/s/photos/math-microscope?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
---
# Grad School Options
.pull-left[
### Please read Donald Asher's book or go to one of his talks at Reed.
]
.pull-right[
<img src="images/asher-book.jpg" width="60%" />
]
---
### Some ideas for gaining exposure to biostatistics (and public health) careers as an undergrad
1️⃣ Do some field work: ☎️ Talk to people in the Reed alumni directory
* Keep it short (15-20 min)
* Ask them who else to talk to
* Keep a spreadsheet with everyone you've talked to
* Periodically update them!
This was *very* hard for me at first and I promise you will get better at it. Get help from the career office. Tell them what you're scared about and ask them for advice.
> The people that you will talk to have had different experiences and grown up in different environments. What worked for them may not work for you.
---
### Some ideas for gaining exposure to biostatistics (and public health) careers as an undergrad
2️⃣ Go to a conference or local meetup 🎤 👩💼 👨💼
* Lots of conferences have moved online this year
* Many have scholarships or are free
[R conferences](https://rviews.rstudio.com/2021/03/03/2021-r-conferences/): [Cascadia R Conf](https://cascadiarconf.com/), useR!, R/Medicine, R/Pharma
Data conferences: [csv,conf,v6](https://csvconf.com/)
Python conferences
Lots of stats conferences: JSM, find others through [American Statistical Association](https://www.amstat.org/asa/meetings/home.aspx) website.
Meetup.com: Portland R User Group, R-Ladies, PyLadies PDX, Portland Python User Group
---
### Some ideas for gaining exposure to biostatistics (and public health) careers as an undergrad
3️⃣ Read journals 📚
.pull-left[
Get the table of contents of a journal (don't pick too many) delivered via email and read the abstract for whatever catches your eye.
Some ideas: New England Journal of Medicine, JAMA, The Lancet, Biostatistics, American Journal of Epidemiology, American Statistician.
]
.pull-right[
<img src="images/thesis-desk.png" width="80%" />
]
---
### Some ideas for gaining exposure to biostatistics (and public health) careers as an undergrad
4️⃣ Internships, volunteer work, and summer programs 👩🔧
* Ask the career office for help.
* Use the network you've built by talking to Reed alumni.
* Summer programs: Universities offer more specialized summer programs (and scholarships), for example the [UW Summer Institutes](https://www.biostat.washington.edu/summerinstitutes).
---
## Some advice
💡 Stacey Abrams on getting lost in possibilities:
> I am a living example of the fact that there is no glory in having only one supreme goal. Too few books on achieving your dreams acknowledge that we are multifaceted beings with many different talents and interests. Society sometimes chides us to be focused on one goal, one passion, one ambition. It starts in college when we're told to pick a major.
On ambition:
> Ambition means being proactive...[Do] something that moves you forward at a constant pace.
Excerpt from *Lead from the Outside: How to Build Your Future and Make Real Change*
---
# Resources
* [Biostatistics: It's not what you think it is](https://simplystatistics.org/2015/11/09/biostatistics-its-not-what-you-think-it-is/). Simply Statistics post.
* [Not so Standard Deviations](https://nssdeviations.com/)
* [rOpenSci](https://ropensci.org/)
* [R-Ladies](https://rladies.org/) and [PyLadies](https://pyladies.com/)
* [Designing Your Life](https://designingyour.life/the-book/)
* Outdoors Leadership: Check out [Reed Outdoor Education Center](https://www.reed.edu/sports_center/rope/Outdoor%20Center.html), [Mazamas](https://mazamas.org/), [Mountaineers](https://www.mountaineers.org/)
---
# Public Health and Statistics Books
* [Pathologies of Power](https://bookshop.org/books/pathologies-of-power-health-human-rights-and-the-new-war-on-the-poor-9780520243262/9780520243262) by Paul Farmer
* [The Invisible Cure](https://bookshop.org/books/the-invisible-cure-why-we-are-losing-the-fight-against-aids-in-africa/9780312427726) by Helen Epstein
* [On Immunity: An Inoculation](https://bookshop.org/books/on-immunity-an-inoculation-9781555976897/9781555977207) by Eula Biss
* [Pox: An American History](https://www.goodreads.com/book/show/9730383-pox) by Michael Willrich
* [Epidemiology Matters: A New Introuduction to Methodological Foundations](https://oxfordmedicine.com/view/10.1093/med/9780199331246.001.0001/med-9780199331246) by Katherine M. Keyes and Sandro Galea
* [Causal Inference: What If](https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/) by Miguel Hernán and Jamie Robins
---
class: center, middle
# Thanks!
Email: [email protected]
Twitter: @mwgerber
Slides created via the R package [**xaringan**](https://github.com/yihui/xaringan).
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>