Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

本地部署之后,AgentFabric上操作就会报错。preview_send_message user_agent = _state['user_agent'] KeyError: 'user_agent' #523

Open
3 tasks
yebanliuying opened this issue Jul 7, 2024 · 12 comments
Assignees
Labels
bug Something isn't working

Comments

@yebanliuying
Copy link

Initial Checks

  • I have searched GitHub for a duplicate issue and I'm sure this is something new
  • I have read and followed the docs & demos and still think this is a bug
  • I am confident that the issue is with modelscope-agent (not my code, or another library in the ecosystem)

What happened + What you expected to happen

image 根据https://github.com/modelscope/modelscope-agent/blob/master/docs/local_deploy.md ,本地部署之后,AgentFabric上操作就会报错。 报错信息如下: Starting install nltk data... nltk data installed. setting nltk data path to: /data/work/modelscope-agent/apps/agentfabric/tmp/nltk_data /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_fields.py:184: UserWarning: Field name "function_map" shadows an attribute in parent "Agent"; warnings.warn( Running on local URL: http://0.0.0.0:7860

To create a public link, set share=True in launch().
2024-07-07 14:33:31.463 - modelscope-agent - INFO - | message: builder_cfg | uuid: local_user | details: {'builder_cfg': "Config (path: /tmp/agentfabric/config/local_user/builder_config.json): {'name': '', 'avatar': 'custom_bot_avatar.png', 'description': '', 'instruction': '', 'language': 'zh', 'prompt_recommend': ['你可以做什么?', '你有什么功能?', '如何使用你的功能?', '能否给我一些示例指令?'], 'knowledge': [], 'tools': {'image_gen': {'name': 'Wanx Image Generation', 'is_active': True, 'use': True}, 'code_interpreter': {'name': 'Code Interpreter', 'is_active': True, 'use': False}}, 'model': 'qwen-max'}"} | step: | error:
2024-07-07 14:33:31.493 - modelscope-agent - INFO - | message: using model qwen-max with tool Config (path: ./config/tool_config.json): {'image_gen': {'name': 'Wanx Image Generation', 'is_active': True, 'use': True, 'is_remote_tool': True}, 'code_interpreter': {'name': 'Code Interpreter', 'is_active': True, 'use': False, 'is_remote_tool': False, 'max_output': 2000}, 'web_browser': {'name': 'Web Browsing', 'is_active': True, 'use': False, 'max_browser_length': 2000}, 'amap_weather': {'name': '高德天气', 'is_active': True, 'use': False}, 'paraformer_asr': {'name': 'Paraformer语音识别', 'is_active': True, 'use': False, 'is_remote_tool': True}, 'sambert_tts': {'name': 'Sambert语音合成', 'is_active': True, 'use': False, 'is_remote_tool': True}, 'wordart_texture_generation': {'name': '艺术字纹理生成', 'is_active': True, 'use': False}, 'web_search': {'name': 'Web Searching', 'is_active': True, 'use': False, 'searcher': 'bing'}, 'qwen_vl': {'name': 'Qwen-VL识图', 'is_active': True, 'use': False}, 'style_repaint': {'name': '人物风格重绘', 'is_active': True, 'use': False}, 'image_enhancement': {'name': '追影-放大镜', 'is_active': True, 'use': False}, 'text-address': {'name': '地址解析', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/mgeo_geographic_elements_tagging_chinese_base', 'use': False, 'is_active': True, 'is_remote_tool': True}, 'text-ner': {'name': '命名实体识别', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/nlp_raner_named-entity-recognition_chinese-base-cmeee', 'use': False, 'is_active': False, 'is_remote_tool': True}, 'speech-generation': {'name': '语音生成', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/speech_sambert-hifigan_tts_zh-cn_16k', 'use': False, 'is_active': True, 'is_remote_tool': True}, 'video-generation': {'name': '视频生成', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/text-to-video-synthesis', 'use': False, 'is_active': True, 'is_remote_tool': True}, 'text-translation-en2zh': {'name': '英译中', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/nlp_csanmt_translation_en2zh', 'use': False, 'is_active': False, 'is_remote_tool': True}, 'text-translation-zh2en': {'name': '中译英', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/nlp_csanmt_translation_zh2en', 'use': False, 'is_active': False, 'is_remote_tool': True}} and function list ['image_gen'] | uuid: local_user | details: {'model_config': {'type': 'dashscope', 'model': 'qwen-max', 'length_constraint': {'knowledge': 4000, 'input': 6000}, 'generate_cfg': {'use_raw_prompt': True, 'top_p': 0.5, 'stop': 'Observation'}}} | step: | error:
2024-07-07 14:33:31.496 - modelscope-agent - ERROR - | message: | uuid: local_user | details: {'error_traceback': 'Traceback (most recent call last):\n File "/data/work/modelscope-agent/apps/agentfabric/app.py", line 37, in init_user\n user_agent, user_memory = init_user_chatbot_agent(\n File "/data/work/modelscope-agent/apps/agentfabric/user_core.py", line 46, in init_user_chatbot_agent\n agent = RolePlay(\n File "/data/work/modelscope-agent/modelscope_agent/agents/role_play.py", line 146, in init\n Agent.init(self, function_list, llm, storage_path, name,\n File "/data/work/modelscope-agent/modelscope_agent/agent.py", line 44, in init\n self.llm = get_chat_model(**self.llm_config)\n File "/data/work/modelscope-agent/modelscope_agent/llm/init.py", line 21, in get_chat_model\n return LLM_REGISTRY[registered_model_id](model, model_server, **kwargs)\n File "/data/work/modelscope-agent/modelscope_agent/llm/dashscope.py", line 78, in init\n assert dashscope.api_key, 'DASHSCOPE_API_KEY is required.'\nAssertionError: DASHSCOPE_API_KEY is required.\n'} | step: | error: DASHSCOPE_API_KEY is required.
2024-07-07 14:33:31.501 - modelscope-agent - INFO - | message: using builder model qwen-max | uuid: local_user | details: {} | step: | error:
2024-07-07 14:33:31.502 - modelscope-agent - ERROR - | message: | uuid: local_user | details: {'error_traceback': 'Traceback (most recent call last):\n File "/data/work/modelscope-agent/apps/agentfabric/app.py", line 52, in init_builder\n builder_agent, builder_memory = init_builder_chatbot_agent(uuid_str)\n File "/data/work/modelscope-agent/apps/agentfabric/builder_core.py", line 35, in init_builder_chatbot_agent\n agent = AgentBuilder(llm=llm_config, uuid_str=uuid_str)\n File "/data/work/modelscope-agent/modelscope_agent/agents/agent_builder.py", line 91, in init\n super().init(\n File "/data/work/modelscope-agent/modelscope_agent/agent.py", line 44, in init\n self.llm = get_chat_model(**self.llm_config)\n File "/data/work/modelscope-agent/modelscope_agent/llm/init.py", line 21, in get_chat_model\n return LLM_REGISTRY[registered_model_id](model, model_server, **kwargs)\n File "/data/work/modelscope-agent/modelscope_agent/llm/dashscope.py", line 78, in init\n assert dashscope.api_key, 'DASHSCOPE_API_KEY is required.'\nAssertionError: DASHSCOPE_API_KEY is required.\n'} | step: | error: DASHSCOPE_API_KEY is required.
Traceback (most recent call last):
File "/opt/conda/lib/python3.10/site-packages/gradio/queueing.py", line 532, in process_events
response = await route_utils.call_process_api(
File "/opt/conda/lib/python3.10/site-packages/gradio/route_utils.py", line 276, in call_process_api
output = await app.get_blocks().process_api(
File "/opt/conda/lib/python3.10/site-packages/gradio/blocks.py", line 1928, in process_api
result = await self.call_function(
File "/opt/conda/lib/python3.10/site-packages/gradio/blocks.py", line 1526, in call_function
prediction = await utils.async_iteration(iterator)
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 656, in async_iteration
return await iterator.anext()
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 649, in anext
return await anyio.to_thread.run_sync(
File "/opt/conda/lib/python3.10/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/opt/conda/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 2134, in run_sync_in_worker_thread
return await future
File "/opt/conda/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 851, in run
result = context.run(func, *args)
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 632, in run_sync_iterator_async
return next(iterator)
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 815, in gen_wrapper
response = next(iterator)
File "/data/work/modelscope-agent/apps/agentfabric/app.py", line 435, in create_send_message
builder_agent = _state['builder_agent']
KeyError: 'builder_agent'
Traceback (most recent call last):
File "/opt/conda/lib/python3.10/site-packages/gradio/queueing.py", line 532, in process_events
response = await route_utils.call_process_api(
File "/opt/conda/lib/python3.10/site-packages/gradio/route_utils.py", line 276, in call_process_api
output = await app.get_blocks().process_api(
File "/opt/conda/lib/python3.10/site-packages/gradio/blocks.py", line 1928, in process_api
result = await self.call_function(
File "/opt/conda/lib/python3.10/site-packages/gradio/blocks.py", line 1526, in call_function
prediction = await utils.async_iteration(iterator)
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 656, in async_iteration
return await iterator.anext()
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 649, in anext
return await anyio.to_thread.run_sync(
File "/opt/conda/lib/python3.10/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/opt/conda/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 2134, in run_sync_in_worker_thread
return await future
File "/opt/conda/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 851, in run
result = context.run(func, *args)
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 632, in run_sync_iterator_async
return next(iterator)
File "/opt/conda/lib/python3.10/site-packages/gradio/utils.py", line 815, in gen_wrapper
response = next(iterator)
File "/data/work/modelscope-agent/apps/agentfabric/app.py", line 601, in preview_send_message
user_agent = _state['user_agent']
KeyError: 'user_agent'

Versions / Dependencies

最新版本

Reproduction script

GRADIO_SERVER_NAME=0.0.0.0 PYTHONPATH=../../ python app.py

Issue Severity

High: It blocks me from completing my task.

@yebanliuying yebanliuying added the bug Something isn't working label Jul 7, 2024
@yebanliuying
Copy link
Author

模型配的是:Qwen2-72B-Instruct-AWQ

"qwen2-72b-instruct-awq": {
"type": "openai",
"model": "qwen/Qwen2-72B-Instruct-AWQ",
"api_base": "http://localhost:8000/v1",
"is_chat": true,
"is_function_call": false
}

@yebanliuying
Copy link
Author

在环境变量定义DASHSCOPE_API_KEY了之后能往下跑了,但是还是会报错:
During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/data/work/modelscope-agent/apps/agentfabric/builder_core.py", line 60, in gen_response_and_process
for s in response:
File "/data/work/modelscope-agent/modelscope_agent/llm/dashscope.py", line 20, in stream_output
for trunk in response:
File "/data/work/modelscope-agent/modelscope_agent/llm/dashscope.py", line 142, in stat_last_call_token_info
if not chunk.usage.get('total_tokens'):
AttributeError: 'NoneType' object has no attribute 'get'
| step: | error: llm result is not valid
2024-07-07 14:59:58.225 - modelscope-agent - INFO - | message: frame | uuid: local_user | details: {'frame': '{'error': "llm result is not valid: 'NoneType' object has no attribute 'get'. Please reset and try again."}'} | step: | error:
2024-07-07 14:59:58.233 - modelscope-agent - INFO - | message: frame | uuid: local_user | details: {'frame': "{'error': 'llm result is not valid. parse RichConfig error. Please reset and try again.'}"} | step: | error:
2024-07-07 14:59:58.241 - modelscope-agent - ERROR - | message: | uuid: local_user | details: {} | step: | error: parse RichConfig error
No valid document. Return Empty Response.
2024-07-07 15:00:09.693 - modelscope-agent - INFO - | message: call dashscope generation api | uuid: | details: {'model': 'qwen-max', 'messages': [{'role': 'user', 'content': 'What is the weather like in Boston?'}], 'stop': [{'type': 'function', 'function': {'name': 'get_current_weather', 'description': 'Get the current weather in a given location.', 'parameters': {'type': 'object', 'properties': {'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'}, 'unit': {'type': 'string', 'enum': ['celsius', 'fahrenheit']}}, 'required': ['location']}}}], 'top_p': 0.8, 'result_format': 'message', 'stream': True} | step: | error:
2024-07-07 15:00:09.700 - modelscope-agent - INFO - | message: call dashscope generation api | uuid: | details: {'model': 'qwen-max', 'messages': [{'role': 'user', 'content': '<|im_start|>system\n\n\n# 知识库\n\nEmpty Response\n\n\n# 工具\n\n## 你拥有如下工具:\n\nimage_gen: image_gen API。AI绘画(图像生成)服务,输入文本描述和图像分辨率,返回根据文本信息绘制的图片URL。 输入参数: {"type": "object", "properties": {"text": {"type": "string", "description": "详细描述了希望生成的图像具有什么内容,例如人物、环境、动作等细节描述"}, "resolution": {"type": "string", "description": "格式是 数字数字,表示希望生成的图像的分辨率大小,选项有[10241024, 7201280, 1280720]"}, "lora_index": {"type": "string", "description": "如果用户要求使用lora的情况下,则使用该参数,没有指定的情况下默认为wanx1.4.5_textlora_huiben2_20240518"}}, "required": ["text", "resolution"]} Format the arguments as a JSON object.\n\n## 当你需要调用工具时,请在你的回复中穿插如下的工具调用命令,可以根据需求调用零次或多次:\n\n工具调用\nAction: 工具的名称,必须是[image_gen]之一\nAction Input: 工具的输入\nObservation: 工具返回的结果\nAnswer: 根据Observation总结本次工具调用返回的结果,如果结果中出现url,请使用如下格式展示出来:图片\n\n\n# 指令\n\n你扮演AI-Agent,\n你具有下列具体功能:\n下面你将开始扮演\n\n请注意:你具有图像和视频的展示能力,也具有运行代码的能力,不要在回复中说你做不到。\n<|im_end|>\n<|im_start|>user\n(你正在扮演。你可以使用工具:[image_gen]。请查看前面的知识库)你可以做什么?<|im_end|>\n<|im_start|>assistant\n'}], 'stop': ['Observation:', 'Observation:\n'], 'top_p': 0.8, 'result_format': 'message', 'stream': True} | step: | error:
2024-07-07 15:00:09.701 - modelscope-agent - INFO - | message: call llm 1 times output: <generator object stream_output at 0x79f841e9b060>

@yebanliuying
Copy link
Author

2024-07-07 15:44:18.618 - modelscope-agent - INFO - | message: using builder model qwen2-72b-instruct-awq | uuid: local_user | details: {} | step: | error:
2024-07-07 15:44:18.619 - modelscope-agent - INFO - | message: client url http://localhost:8000/v1, client key: EMPTY
2024-07-07 15:44:18,667 - modelscope - INFO - initiate model from /data/work/nlp_gte_sentence-embedding_chinese-base
2024-07-07 15:44:18,667 - modelscope - INFO - initiate model from location /data/work/nlp_gte_sentence-embedding_chinese-base.
2024-07-07 15:44:18,668 - modelscope - INFO - initialize model from /data/work/nlp_gte_sentence-embedding_chinese-base
2024-07-07 15:44:19,958 - modelscope - WARNING - No preprocessor field found in cfg.
2024-07-07 15:44:19,958 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.
2024-07-07 15:44:19,958 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': '/data/work/nlp_gte_sentence-embedding_chinese-base'}. trying to build by task and model information.
2024-07-07 15:44:19,984 - modelscope - WARNING - No preprocessor field found in cfg.
2024-07-07 15:44:19,984 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.
2024-07-07 15:44:19,984 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': '/data/work/nlp_gte_sentence-embedding_chinese-base', 'sequence_length': 128}. trying to build by task and model information.
2024-07-07 15:44:20.020 - modelscope-agent - INFO - | message: using model qwen2-72b-instruct-awq with tool Config (path: ./config/tool_config.json): {'image_gen': {'name': 'Wanx Image Generation', 'is_active': True, 'use': False, 'is_remote_tool': True}, 'code_interpreter': {'name': 'Code Interpreter', 'is_active': True, 'use': False, 'is_remote_tool': False, 'max_output': 2000}, 'web_browser': {'name': 'Web Browsing', 'is_active': True, 'use': False, 'max_browser_length': 2000}, 'amap_weather': {'name': '高德天气', 'is_active': True, 'use': False}, 'paraformer_asr': {'name': 'Paraformer语音识别', 'is_active': True, 'use': False, 'is_remote_tool': True}, 'sambert_tts': {'name': 'Sambert语音合成', 'is_active': True, 'use': False, 'is_remote_tool': True}, 'wordart_texture_generation': {'name': '艺术字纹理生成', 'is_active': True, 'use': False}, 'web_search': {'name': 'Web Searching', 'is_active': True, 'use': False, 'searcher': 'bing'}, 'qwen_vl': {'name': 'Qwen-VL识图', 'is_active': True, 'use': False}, 'style_repaint': {'name': '人物风格重绘', 'is_active': True, 'use': False}, 'image_enhancement': {'name': '追影-放大镜', 'is_active': True, 'use': False}, 'text-address': {'name': '地址解析', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/mgeo_geographic_elements_tagging_chinese_base', 'use': False, 'is_active': True, 'is_remote_tool': True}, 'text-ner': {'name': '命名实体识别', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/nlp_raner_named-entity-recognition_chinese-base-cmeee', 'use': False, 'is_active': False, 'is_remote_tool': True}, 'speech-generation': {'name': '语音生成', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/speech_sambert-hifigan_tts_zh-cn_16k', 'use': False, 'is_active': True, 'is_remote_tool': True}, 'video-generation': {'name': '视频生成', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/text-to-video-synthesis', 'use': False, 'is_active': True, 'is_remote_tool': True}, 'text-translation-en2zh': {'name': '英译中', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/nlp_csanmt_translation_en2zh', 'use': False, 'is_active': False, 'is_remote_tool': True}, 'text-translation-zh2en': {'name': '中译英', 'url': 'https://api-inference.modelscope.cn/api-inference/v1/models/damo/nlp_csanmt_translation_zh2en', 'use': False, 'is_active': False, 'is_remote_tool': True}} and function list [] | uuid: local_user | details: {'model_config': {'type': 'openai', 'model': 'qwen/Qwen2-72B-Instruct-AWQ', 'api_base': 'http://localhost:8000/v1', 'is_chat': True, 'is_function_call': False, 'generate_cfg': {'top_p': 0.5, 'stop': 'Observation'}}} | step: | error:
2024-07-07 15:44:20.020 - modelscope-agent - INFO - | message: client url http://localhost:8000/v1, client key: EMPTY
Neither documents nor cache_dir.
No valid document. Return Empty Response.
2024-07-07 15:44:23.533 - modelscope-agent - INFO - | message: call llm 1 times output: <generator object OpenAi._chat_stream at 0x71e1c22cfd10>
2024-07-07 15:44:23.534 - modelscope-agent - INFO - | message: call openai api, model: qwen/Qwen2-72B-Instruct-AWQ, messages: [{'role': 'system', 'content': "\n\n# 知识库\n\nEmpty Response\n\n\n# 指令\n\n你扮演AI-Agent,你的名字是agent-demo。you're an agent \n你具有下列具体功能:\n下面你将开始扮演agent-demo\n\n请注意:你具有图像和视频的展示能力,也具有运行代码的能力,不要在回复中说你做不到。\n"}, {'role': 'user', 'content': '(你正在扮演agent-demo。请查看前面的知识库)你有什么功能?'}], stop: ['Observation:', 'Observation:\n'], stream: True, args: {'user_token': ''}

@zzhangpurdue
Copy link
Collaborator

what is your modelscope-agent version?

@zzhangpurdue
Copy link
Collaborator

模型配的是:Qwen2-72B-Instruct-AWQ

"qwen2-72b-instruct-awq": { "type": "openai", "model": "qwen/Qwen2-72B-Instruct-AWQ", "api_base": "http://localhost:8000/v1", "is_chat": true, "is_function_call": false }

what is your llm_config?

@yebanliuying
Copy link
Author

what is your modelscope-agent version?

用的是本地部署哪个流程,因为有docker缺少新版本的引用,所以用的官方推荐的 git checkout 8deef6d 这个版本。

@yebanliuying
Copy link
Author

模型配的是:Qwen2-72B-Instruct-AWQ
"qwen2-72b-instruct-awq": { "type": "openai", "model": "qwen/Qwen2-72B-Instruct-AWQ", "api_base": "http://localhost:8000/v1", "is_chat": true, "is_function_call": false }

what is your llm_config?

官方本地话部署里面没写要单独修改llm_config啊。只是编辑 modelscope-agent/apps/agentfabric/config/model_config.json, 增加了本地模型的配置。顺便问一下,咱们框架跑起来好多地方的默认都会要 DASHSCOPE_API_KEY 。对于开源框架的使用来说感觉不太解耦。纯本地化部署有点跑不起来

@zzhangpurdue
Copy link
Collaborator

直接用最新的master分支,然后 pip install -e . 安装一下试试。

what is your modelscope-agent version?

用的是本地部署哪个流程,因为有docker缺少新版本的引用,所以用的官方推荐的 git checkout 8deef6d 这个版本。

@zzhangpurdue
Copy link
Collaborator

模型配的是:Qwen2-72B-Instruct-AWQ
"qwen2-72b-instruct-awq": { "type": "openai", "model": "qwen/Qwen2-72B-Instruct-AWQ", "api_base": "http://localhost:8000/v1", "is_chat": true, "is_function_call": false }

what is your llm_config?

官方本地话部署里面没写要单独修改llm_config啊。只是编辑 modelscope-agent/apps/agentfabric/config/model_config.json, 增加了本地模型的配置。顺便问一下,咱们框架跑起来好多地方的默认都会要 DASHSCOPE_API_KEY 。对于开源框架的使用来说感觉不太解耦。纯本地化部署有点跑不起来

嗯,主要就是基础模型调用的是qwen-max 需要dashscope。
那你在agentfabric里面有没有选择用你这个模型进行推理,而不是用默认的,默认的会请求qwen-max,就会依赖dashscope

@yebanliuying
Copy link
Author

直接用最新的master分支,然后 pip install -e . 安装一下试试。

what is your modelscope-agent version?

用的是本地部署哪个流程,因为有docker缺少新版本的引用,所以用的官方推荐的 git checkout 8deef6d 这个版本。

image 没跑起来..报了:Traceback (most recent call last): File "/data/work/modelscope-agent/apps/agentfabric/app.py", line 104, in state = gr.State({'session_seed': draw_seed}, delete_callback=delete) File "/opt/conda/lib/python3.10/site-packages/gradio/component_meta.py", line 155, in wrapper return fn(self, **kwargs) TypeError: State.__init__() got an unexpected keyword argument 'delete_callback'

@zzhangpurdue
Copy link
Collaborator

gradio==4.36.1
升级一下。
image

@chelun86
Copy link

解决了嘛?我和你差不多问题

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

4 participants