diff --git a/configs/config_all.yaml b/configs/config_all.yaml
index 9cb64fa30..6c4aa99d5 100644
--- a/configs/config_all.yaml
+++ b/configs/config_all.yaml
@@ -179,6 +179,14 @@ process:
lang: en # sample in which language
tokenization: false # whether to use model to tokenize documents
substrings: ['http', 'www', '.com', 'href', '//'] # incorrect substrings to remove
+ - sentence_augmentation_mapper: # augment sentences using LLMs.
+ hf_model: 'Qwen/Qwen2-7B-Instruct' # model name of the LLM on huggingface
+ system_prompt: None # system prompt
+ task_sentence: None # the instruction for the current task
+ max_new_tokens: 256 # the maximum number of new tokens generated by the model
+ temperature: 0.2 # used to control the randomness of generated text
+ top_p: None # randomly select the next word from the group of words whose cumulative probability reaches p
+ num_beams: 1 # the larger the beam search size, the higher the quality of the generated text
- sentence_split_mapper: # split text to multiple sentences and join them with '\n'
lang: 'en' # split text in what language
- video_captioning_from_audio_mapper: # caption a video according to its audio streams based on Qwen-Audio model
diff --git a/data_juicer/ops/mapper/__init__.py b/data_juicer/ops/mapper/__init__.py
index d0e32825c..e38e19c6d 100644
--- a/data_juicer/ops/mapper/__init__.py
+++ b/data_juicer/ops/mapper/__init__.py
@@ -13,8 +13,8 @@
remove_repeat_sentences_mapper, remove_specific_chars_mapper,
remove_table_text_mapper,
remove_words_with_incorrect_substrings_mapper,
- replace_content_mapper, sentence_split_mapper,
- video_captioning_from_audio_mapper,
+ replace_content_mapper, sentence_augmentation_mapper,
+ sentence_split_mapper, video_captioning_from_audio_mapper,
video_captioning_from_frames_mapper,
video_captioning_from_summarizer_mapper,
video_captioning_from_video_mapper, video_face_blur_mapper,
@@ -57,6 +57,7 @@
from .remove_words_with_incorrect_substrings_mapper import \
RemoveWordsWithIncorrectSubstringsMapper
from .replace_content_mapper import ReplaceContentMapper
+from .sentence_augmentation_mapper import SentenceAugmentationMapper
from .sentence_split_mapper import SentenceSplitMapper
from .video_captioning_from_audio_mapper import VideoCaptioningFromAudioMapper
from .video_captioning_from_frames_mapper import \
@@ -123,6 +124,7 @@
'AudioFFmpegWrappedMapper',
'VideoSplitByDurationMapper',
'VideoFaceBlurMapper',
+ 'SentenceAugmentationMapper'
]
# yapf: enable
diff --git a/data_juicer/ops/mapper/sentence_augmentation_mapper.py b/data_juicer/ops/mapper/sentence_augmentation_mapper.py
new file mode 100644
index 000000000..e75e1ac6e
--- /dev/null
+++ b/data_juicer/ops/mapper/sentence_augmentation_mapper.py
@@ -0,0 +1,117 @@
+from data_juicer.ops.base_op import OPERATORS, Mapper
+from data_juicer.utils.model_utils import get_model, prepare_model
+
+DEFAULT_SYSTEM_PROMPT = "A chat between a curious user and an artificial \
+ intelligence assistant. The assistant gives helpful, detailed, and \
+ polite answers to the user's questions."
+
+OP_NAME = 'sentence_augmentation_mapper'
+
+
+@OPERATORS.register_module(OP_NAME)
+class SentenceAugmentationMapper(Mapper):
+ """Mapper to augment sentences.
+ The purpose of this operation is to enhance sentences.
+ If the input text is at the document level, the enhancement
+ effect may not be optimal. Therefore, please consider the
+ length of the input text carefully.
+
+ Recommended model list: [
+ lmsys/vicuna-13b-v1.5
+ Qwen/Qwen2-7B-Instruct
+ ]
+ """
+ _accelerator = 'cuda'
+
+ def __init__(self,
+ hf_model: str = 'Qwen/Qwen2-7B-Instruct',
+ system_prompt: str = None,
+ task_sentence: str = None,
+ max_new_tokens=256,
+ temperature=0.2,
+ top_p=None,
+ num_beams=1,
+ *args,
+ **kwargs):
+ """
+ Initialization method.
+ :param hf_model: Hugginface model id.
+ :param system_prompt: System prompt.
+ :param task_sentence: The instruction for the current task.
+ :param max_new_tokens: the maximum number of new tokens
+ generated by the model.
+ :param temperature: used to control the randomness of
+ generated text. The higher the temperature, the more
+ random and creative the generated text will be.
+ :param top_p: randomly select the next word from the group
+ of words whose cumulative probability reaches p.
+ :param num_beams: the larger the beam search size, the higher
+ the quality of the generated text.
+ :param args: extra args
+ :param kwargs: extra args
+ """
+ super().__init__(*args, num_proc=1, **kwargs)
+
+ if system_prompt is None:
+ system_prompt = DEFAULT_SYSTEM_PROMPT
+ self.system_prompt = system_prompt
+ self.hf_model = hf_model
+ self.max_new_tokens = max_new_tokens
+
+ self.model_key = prepare_model(model_type='huggingface',
+ pretrained_model_name_or_path=hf_model)
+ self.temperature = temperature
+ self.top_p = top_p
+ self.num_beams = num_beams
+ self.task_sentence = task_sentence
+
+ def process(self, sample=None, rank=None):
+
+ if self.task_sentence is None:
+ print('[Warning] task_sentence is None!')
+ sample[self.text_key] = ''
+ return sample
+
+ model, processor = get_model(model_key=self.model_key,
+ rank=rank,
+ use_cuda=self.use_cuda())
+
+ if 'vicuna' in self.hf_model:
+ input_prompt = self.system_prompt + " USER: Here \
+ is a sentence: \"" + sample[
+ self.text_key] + "\". " + self.task_sentence + ' ASSISTANT:'
+
+ else:
+ messages = [{
+ 'role': 'system',
+ 'content': self.system_prompt
+ }, {
+ 'role':
+ 'user',
+ 'content':
+ "Here is a sentence: \"" + sample[self.text_key] + "\". " +
+ self.task_sentence
+ }]
+ input_prompt = processor.apply_chat_template(
+ messages, tokenize=False, add_generation_prompt=True)
+
+ inputs = processor(input_prompt, return_tensors='pt').to(model.device)
+ response = model.generate(**inputs,
+ max_new_tokens=self.max_new_tokens,
+ eos_token_id=processor.eos_token_id,
+ top_p=self.top_p,
+ temperature=self.temperature,
+ num_beams=self.num_beams)
+ input_token_len = inputs.input_ids.shape[1]
+ n_diff_input_output = (inputs.input_ids !=
+ response[:, :input_token_len]).sum().item()
+ if n_diff_input_output > 0:
+ print(f'[Warning] {n_diff_input_output} output_ids are \
+ not the same as the input_ids')
+ output = processor.batch_decode(response[:, input_token_len:],
+ skip_special_tokens=True)[0]
+ output = output.strip().strip("\"")
+
+ sample[self.text_key] = output
+
+ return sample
diff --git a/docs/Operators.md b/docs/Operators.md
index 144550790..0d8f7cc59 100644
--- a/docs/Operators.md
+++ b/docs/Operators.md
@@ -11,7 +11,7 @@ The operators in Data-Juicer are categorized into 5 types.
| Type | Number | Description |
|-----------------------------------|:------:|-------------------------------------------------|
| [ Formatter ]( #formatter ) | 7 | Discovers, loads, and canonicalizes source data |
-| [ Mapper ]( #mapper ) | 46 | Edits and transforms samples |
+| [ Mapper ]( #mapper ) | 47 | Edits and transforms samples |
| [ Filter ]( #filter ) | 41 | Filters out low-quality samples |
| [ Deduplicator ]( #deduplicator ) | 5 | Detects and removes duplicate samples |
| [ Selector ]( #selector ) | 4 | Selects top samples based on ranking |
@@ -80,6 +80,7 @@ All the specific operators are listed below, each featured with several capabili
| remove_table_text_mapper | General, Financial | en | Detects and removes possible table contents (:warning: relies on regular expression matching and thus fragile)|
| remove_words_with_incorrect_
substrings_mapper | General | en, zh | Removes words containing specified substrings |
| replace_content_mapper | General | en, zh | Replace all content in the text that matches a specific regular expression pattern with a designated replacement string |
+| sentence_augmentation_mapper | General | en, zh | Augment sentences using LLMs (Large Language Models) |
| sentence_split_mapper | General | en | Splits and reorganizes sentences according to semantics |
| video_captioning_from_audio_mapper | Multimodal | - | Caption a video according to its audio streams based on Qwen-Audio model |
| video_captioning_from_frames_mapper | Multimodal | - | generate samples whose captions are generated based on an image-to-text model and sampled video frames. Captions from different frames will be concatenated to a single string |
diff --git a/docs/Operators_ZH.md b/docs/Operators_ZH.md
index 3d0e33df3..0a1bc2fee 100644
--- a/docs/Operators_ZH.md
+++ b/docs/Operators_ZH.md
@@ -11,7 +11,7 @@ Data-Juicer 中的算子分为以下 5 种类型。
| 类型 | 数量 | 描述 |
|------------------------------------|:--:|---------------|
| [ Formatter ]( #formatter ) | 7 | 发现、加载、规范化原始数据 |
-| [ Mapper ]( #mapper ) | 46 | 对数据样本进行编辑和转换 |
+| [ Mapper ]( #mapper ) | 47 | 对数据样本进行编辑和转换 |
| [ Filter ]( #filter ) | 41 | 过滤低质量样本 |
| [ Deduplicator ]( #deduplicator ) | 5 | 识别、删除重复样本 |
| [ Selector ]( #selector ) | 4 | 基于排序选取高质量样本 |
@@ -79,6 +79,7 @@ Data-Juicer 中的算子分为以下 5 种类型。
| remove_table_text_mapper | General, Financial | en | 检测并删除可能的表格内容(:warning: 依赖正则表达式匹配,因此很脆弱) |
| remove_words_with_incorrect_
substrings_mapper | General | en, zh | 删除包含指定子字符串的单词 |
| replace_content_mapper | General | en, zh | 使用一个指定的替换字符串替换文本中满足特定正则表达式模版的所有内容 |
+| sentence_augmentation_mapper | General | en, zh | 使用大语言模型来给句子做增强 |
| sentence_split_mapper | General | en | 根据语义拆分和重组句子 |
| video_captioning_from_audio_mapper | Multimodal | - | 基于 Qwen-Audio 模型根据视频的音频流为视频生成新的标题描述 |
| video_captioning_from_frames_mapper | Multimodal | - | 生成样本,其标题是基于一个文字生成图片的模型和原始样本视频中指定帧的图像。不同帧产出的标题会拼接为一条单独的字符串。 |
diff --git a/tests/ops/mapper/test_sentence_augmentation_mapper.py b/tests/ops/mapper/test_sentence_augmentation_mapper.py
new file mode 100644
index 000000000..5cba22b93
--- /dev/null
+++ b/tests/ops/mapper/test_sentence_augmentation_mapper.py
@@ -0,0 +1,34 @@
+import unittest
+from data_juicer.ops.mapper.sentence_augmentation_mapper import SentenceAugmentationMapper
+from data_juicer.utils.unittest_utils import DataJuicerTestCaseBase
+
+
+class SentenceAugmentationMapperTest(DataJuicerTestCaseBase):
+
+ text_key = 'text'
+
+ def _run_sentence_augmentation_mapper(self):
+ op = SentenceAugmentationMapper(
+ hf_model='Qwen/Qwen2-7B-Instruct',
+ task_sentence="Please replace one entity in this sentence with another entity, such as an animal, a vehicle, or a piece of furniture. Please only answer with the replaced sentence.",
+ max_new_tokens=512,
+ temperature=0.9,
+ top_p=0.95,
+ num_beams=1,
+ )
+
+ samples = [
+ {self.text_key: 'a book is near a cat and a dog'}
+ ]
+
+ for sample in samples:
+ result = op.process(sample)
+ print(f'Output results: {result}')
+
+ def test_sentence_augmentation_mapper(self):
+ self._run_sentence_augmentation_mapper()
+
+
+
+if __name__ == '__main__':
+ unittest.main()