diff --git a/README.md b/README.md
index f648146bd..44e8abdef 100644
--- a/README.md
+++ b/README.md
@@ -35,7 +35,6 @@ Start building LLM-empowered multi-agent applications in an easier way.
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| | |
-
----
## News
@@ -187,7 +186,6 @@ the following libraries.
- [Conversation with CodeAct Agent](https://github.com/modelscope/agentscope/blob/main/examples/conversation_with_codeact_agent/)
- [Conversation with Router Agent](https://github.com/modelscope/agentscope/blob/main/examples/conversation_with_router_agent/)
-
- Game
- [Gomoku](https://github.com/modelscope/agentscope/blob/main/examples/game_gomoku)
- [Werewolf](https://github.com/modelscope/agentscope/blob/main/examples/game_werewolf)
@@ -236,7 +234,6 @@ optional dependencies. Full list of optional dependencies refers to
Taking distribution mode as an example, you can install its dependencies
as follows:
-
#### On Windows
```bash
@@ -247,6 +244,7 @@ pip install agentscope[distribute]
```
#### On Mac & Linux
+
```bash
# From source
pip install -e .\[distribute\]
@@ -254,7 +252,6 @@ pip install -e .\[distribute\]
pip install agentscope\[distribute\]
```
-
## Quick Start
### Configuration
@@ -391,35 +388,70 @@ pre-commit install
Please refer to our [Contribution Guide](https://modelscope.github.io/agentscope/en/tutorial/302-contribute.html) for more details.
-## References
-
-If you find our work helpful for your research or application, please
-cite [our paper](https://arxiv.org/abs/2402.14034):
-
-```
-@article{agentscope,
- author = {Dawei Gao and
- Zitao Li and
- Xuchen Pan and
- Weirui Kuang and
- Zhijian Ma and
- Bingchen Qian and
- Fei Wei and
- Wenhao Zhang and
- Yuexiang Xie and
- Daoyuan Chen and
- Liuyi Yao and
- Hongyi Peng and
- Ze Yu Zhang and
- Lin Zhu and
- Chen Cheng and
- Hongzhu Shi and
- Yaliang Li and
- Bolin Ding and
- Jingren Zhou},
- title = {AgentScope: A Flexible yet Robust Multi-Agent Platform},
- journal = {CoRR},
- volume = {abs/2402.14034},
- year = {2024},
-}
-```
+## Publications
+
+If you find our work helpful for your research or application, please cite our papers.
+
+1. [AgentScope: A Flexible yet Robust Multi-Agent Platform](https://arxiv.org/abs/2402.14034)
+
+ ```
+ @article{agentscope,
+ author = {Dawei Gao and
+ Zitao Li and
+ Xuchen Pan and
+ Weirui Kuang and
+ Zhijian Ma and
+ Bingchen Qian and
+ Fei Wei and
+ Wenhao Zhang and
+ Yuexiang Xie and
+ Daoyuan Chen and
+ Liuyi Yao and
+ Hongyi Peng and
+ Ze Yu Zhang and
+ Lin Zhu and
+ Chen Cheng and
+ Hongzhu Shi and
+ Yaliang Li and
+ Bolin Ding and
+ Jingren Zhou}
+ title = {AgentScope: A Flexible yet Robust Multi-Agent Platform},
+ journal = {CoRR},
+ volume = {abs/2402.14034},
+ year = {2024},
+ }
+ ```
+
+2. [On the Design and Analysis of LLM-Based Algorithms](https://arxiv.org/abs/2407.14788)
+
+ ```
+ @article{llm_based_algorithms,
+ author = {Yanxi Chen and
+ Yaliang Li and
+ Bolin Ding and
+ Jingren Zhou},
+ title = {On the Design and Analysis of LLM-Based Algorithms},
+ journal = {CoRR},
+ volume = {abs/2407.14788},
+ year = {2024},
+ }
+ ```
+
+3. [Very Large-Scale Multi-Agent Simulation in AgentScope](https://arxiv.org/abs/2407.17789)
+
+ ```
+ @article{agentscope_simulation,
+ author = {Xuchen Pan and
+ Dawei Gao and
+ Yuexiang Xie and
+ Zhewei Wei and
+ Yaliang Li and
+ Bolin Ding and
+ Ji{-}Rong Wen and
+ Jingren Zhou},
+ title = {Very Large-Scale Multi-Agent Simulation in AgentScope},
+ journal = {CoRR},
+ volume = {abs/2407.17789},
+ year = {2024},
+ }
+ ```
diff --git a/README_ZH.md b/README_ZH.md
index 8c3be6469..d65fca5e1 100644
--- a/README_ZH.md
+++ b/README_ZH.md
@@ -35,8 +35,6 @@
|---------|----------|
| | |
-
-
----
## 新闻
@@ -56,7 +54,6 @@
-
- **[2024-07-15]** AgentScope 中添加了 Mixture of Agents 算法。使用样例请参考 [MoA 示例](https://github.com/modelscope/agentscope/blob/main/examples/conversation_mixture_of_agents)。
- **[2024-06-14]** 新的提示调优(Prompt tuning)模块已经上线 AgentScope,用以帮助开发者生成和优化智能体的 system prompt。更多的细节和使用样例请参考 AgentScope [教程](https://modelscope.github.io/agentscope/en/tutorial/209-prompt_opt.html)!
@@ -232,6 +229,7 @@ pip install agentscope[distribute]
```
#### On Mac & Linux
+
```bash
# From source
pip install -e .\[distribute\]
@@ -362,34 +360,70 @@ pre-commit install
请参阅我们的[贡献指南](https://modelscope.github.io/agentscope/zh_CN/tutorial/302-contribute.html)了解更多细节。
-## 引用
-
-如果您觉得我们的工作对您的研究或应用有帮助,请引用[我们的论文](https://arxiv.org/abs/2402.14034)。
-
-```
-@article{agentscope,
- author = {Dawei Gao and
- Zitao Li and
- Xuchen Pan and
- Weirui Kuang and
- Zhijian Ma and
- Bingchen Qian and
- Fei Wei and
- Wenhao Zhang and
- Yuexiang Xie and
- Daoyuan Chen and
- Liuyi Yao and
- Hongyi Peng and
- Zeyu Zhang and
- Lin Zhu and
- Chen Cheng and
- Hongzhu Shi and
- Yaliang Li and
- Bolin Ding and
- Jingren Zhou},
- title = {AgentScope: A Flexible yet Robust Multi-Agent Platform},
- journal = {CoRR},
- volume = {abs/2402.14034},
- year = {2024},
-}
-```
+## 发表
+
+如果您觉得我们的工作对您的研究或应用有帮助,请引用如下论文
+
+1. [AgentScope: A Flexible yet Robust Multi-Agent Platform](https://arxiv.org/abs/2402.14034)
+
+ ```
+ @article{agentscope,
+ author = {Dawei Gao and
+ Zitao Li and
+ Xuchen Pan and
+ Weirui Kuang and
+ Zhijian Ma and
+ Bingchen Qian and
+ Fei Wei and
+ Wenhao Zhang and
+ Yuexiang Xie and
+ Daoyuan Chen and
+ Liuyi Yao and
+ Hongyi Peng and
+ Ze Yu Zhang and
+ Lin Zhu and
+ Chen Cheng and
+ Hongzhu Shi and
+ Yaliang Li and
+ Bolin Ding and
+ Jingren Zhou}
+ title = {AgentScope: A Flexible yet Robust Multi-Agent Platform},
+ journal = {CoRR},
+ volume = {abs/2402.14034},
+ year = {2024},
+ }
+ ```
+
+2. [On the Design and Analysis of LLM-Based Algorithms](https://arxiv.org/abs/2407.14788)
+
+ ```
+ @article{llm_based_algorithms,
+ author = {Yanxi Chen and
+ Yaliang Li and
+ Bolin Ding and
+ Jingren Zhou},
+ title = {On the Design and Analysis of LLM-Based Algorithms},
+ journal = {CoRR},
+ volume = {abs/2407.14788},
+ year = {2024},
+ }
+ ```
+
+3. [Very Large-Scale Multi-Agent Simulation in AgentScope](https://arxiv.org/abs/2407.17789)
+
+ ```
+ @article{agentscope_simulation,
+ author = {Xuchen Pan and
+ Dawei Gao and
+ Yuexiang Xie and
+ Zhewei Wei and
+ Yaliang Li and
+ Bolin Ding and
+ Ji{-}Rong Wen and
+ Jingren Zhou},
+ title = {Very Large-Scale Multi-Agent Simulation in AgentScope},
+ journal = {CoRR},
+ volume = {abs/2407.17789},
+ year = {2024},
+ }
+ ```
diff --git a/examples/paper_llm_based_algorithm/README.md b/examples/paper_llm_based_algorithm/README.md
index 11199f4f1..9b290b22a 100644
--- a/examples/paper_llm_based_algorithm/README.md
+++ b/examples/paper_llm_based_algorithm/README.md
@@ -1,6 +1,5 @@
# LLM-based algorithms
-
This folder contains the source code for reproducing the experiment results in our arXiv preprint "On the Design and Analysis of LLM-Based Algorithms".
Our work initiates a formal investigation into the design and analysis of LLM-based algorithms,
@@ -11,7 +10,6 @@ Within this folder, you can find our implementation for the key abstractions,
the LLM-based algorithms in four concrete examples,
and the experiments for validating our analysis in the manuscript.
-
## Tested Models
The following models have been tested, which are also listed in `model_configs.json`:
@@ -20,26 +18,25 @@ GPT-3.5 Turbo,
Llama3-8B (with ollama),
Llama3-70B (with vLLM).
-
## Prerequisites
-
1. Install AgentScope from source with `pip`, according to the [official instruction](../../README.md).
2. Install matplotlib: `pip install matplotlib`.
-3. Change directory: `cd examples/llm_based_algorithm`.
+3. Change directory: `cd examples/paper_llm_based_algorithm`.
4. Set up LLM model configs in `model_configs.json`.
-
-
## Usage
### Run experiments
To run experiments for a certain task:
+
```bash
bash ./scripts/exp_{task}.sh
```
+
or copy a piece of scripts therein, modify the parameters, and run it in the terminal, for example:
+
```bash
python3 run_exp_single_variable.py \
--task counting \
@@ -52,6 +49,7 @@ python3 run_exp_single_variable.py \
```
Parameters:
+
- `task`: name of the task, {"counting", "sorting", "retrieval", "retrieval_no_needle", "rag"}.
- `llm_model`: name of the LLM model, i.e. `config_name` in `model_configs.json`.
- `variable_name`: "n" for problem size, or "m" for sub-task size.
@@ -60,30 +58,37 @@ Parameters:
- `save_results`: if `True`, experiment results will be saved to `./out`; otherwise, results will be plotted and shown at the end of the experiment, and won't be saved.
- `ntrials`: number of independent trials for each experiment config, i.e. each entry of `lst_variable`.
-
### Plot results
To plot experiment results that have been saved:
+
```bash
bash ./scripts/plot_{task}.sh
```
+
or copy a piece of scripts therein and run it in the terminal, for example:
+
```bash
python3 plot_exp_results.py \
--folder ./out/counting/exp_counting_vary_n_model_ollama_llama3_8b-2024-06-19-11-11-13-kkwrhc
```
+
The path to the experiment results need to be replaced with the actual one generated during your own experiment.
The generated figures will be saved to the same folder.
-
## Reference
For more details, please refer to our arXiv preprint:
+
```
-@article{chen2024llmbasedalgorithms,
- title={On the Design and Analysis of LLM-Based Algorithms},
- author={Yanxi Chen and Yaliang Li and Bolin Ding and Jingren Zhou},
- year={2024},
+@article{llm_based_algorithms,
+ author = {Yanxi Chen and
+ Yaliang Li and
+ Bolin Ding and
+ Jingren Zhou},
+ title = {On the Design and Analysis of LLM-Based Algorithms},
+ journal = {CoRR},
+ volume = {abs/2407.14788},
+ year = {2024},
}
```
-