diff --git a/06_gpu_and_ml/protein-folding/boltz1.py b/06_gpu_and_ml/protein-folding/boltz1.py index cbe84d092..55176e1f2 100644 --- a/06_gpu_and_ml/protein-folding/boltz1.py +++ b/06_gpu_and_ml/protein-folding/boltz1.py @@ -54,9 +54,10 @@ def main( output_path = here / "data" / "boltz1_result.tar.gz" print(f"locally writing output tar to {output_path}") - with open(output_path, 'wb') as f: + with open(output_path, "wb") as f: f.write(output) + # ## Installing Boltz-1 Python dependencies on Modal # Code running on Modal runs inside containers built from [container images](https://modal.com/docs/guide/images) @@ -69,7 +70,9 @@ def main( image = ( modal.Image.debian_slim(python_version="3.12") - .run_commands("uv pip install --system --compile-bytecode boltz==0.3.2 hf_transfer==0.1.8") + .run_commands( + "uv pip install --system --compile-bytecode boltz==0.3.2 hf_transfer==0.1.8" + ) .env({"HF_HUB_ENABLE_HF_TRANSFER": "1"}) ) @@ -89,7 +92,9 @@ def main( # A Modal Volume is a file system that all of your code running on Modal (or elsewhere!) can access. # For more on storing model weights on Modal, see [this guide](https://modal.com/docs/guide/model-weights). -boltz_model_volume = modal.Volume.from_name("boltz1-models", create_if_missing=True) +boltz_model_volume = modal.Volume.from_name( + "boltz1-models", create_if_missing=True +) models_dir = Path("/models/boltz1") # ## Running Boltz-1 on Modal @@ -102,6 +107,7 @@ def main( # an amino acid sequence as well as a path to an MSA file. We create these # files paths in the function below so they can be picked up by the inference code. + @app.function( image=image, volumes={models_dir: boltz_model_volume}, @@ -112,17 +118,17 @@ def boltz1_inference(msadata, ligandyaml): ligand_filename = "ligand.yaml" temp_filename = "temp.tar.gz" - Path('./seq1.a3m').write_text(msadata) - Path(f'./{ligand_filename}').write_text(ligandyaml) + Path("./seq1.a3m").write_text(msadata) + Path(f"./{ligand_filename}").write_text(ligandyaml) print(f"predicting using boltz model {models_dir}") - os.system(f'boltz predict {ligand_filename} --cache={models_dir}') + os.system(f"boltz predict {ligand_filename} --cache={models_dir}") print(f"creating tar file {temp_filename} of outputs") os.system(f"tar czvf {temp_filename} boltz_results_ligand") print(f"converting {temp_filename} to bytes for returning") - output = open(f'./{temp_filename}', 'rb').read() + output = open(f"./{temp_filename}", "rb").read() return output @@ -142,6 +148,7 @@ def boltz1_inference(msadata, ligandyaml): # as a separate task, concurrently. We don't need to worry about this use of `async` # spreading to the rest of our code -- Modal launches just this Function in an async runtime. + @app.function( volumes={models_dir: boltz_model_volume}, timeout=20 * MINUTES, @@ -152,7 +159,7 @@ async def download_inference_dependencies(force=False): import aiohttp - base_url = "https://huggingface.co/boltz-community/boltz-1/resolve/e01950840c2a2ec881695f26e994a73b417af0b2/" # sic + base_url = "https://huggingface.co/boltz-community/boltz-1/resolve/e01950840c2a2ec881695f26e994a73b417af0b2/" # sic inference_dependencies = [ "boltz1.ckpt", "ccd.pkl",