-
Notifications
You must be signed in to change notification settings - Fork 0
/
centriole_analysis.py
executable file
·428 lines (239 loc) · 11.8 KB
/
centriole_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 22 08:52:52 2021
@author: schorb
"""
from openpyxl import load_workbook
import sys
import os
import numpy as np
import shutil
import re
from pybdv import transformations as tf
import mobie.metadata as mm
import glob
import json
import xml.etree.ElementTree as ET
import mrcfile as mrc
def vec2mat(a,b):
# returns a rotation matrix that trnasforms vector a on top of vector b
a = a/np.linalg.norm(a)
b = b/np.linalg.norm(b)
s = np.linalg.norm(np.cross(a, b))
c = np.dot(a, b)
if len(a)>2:
G = np.matrix([[c,-s,0],[s,c,0],[0,0,1]])
F = np.matrix([a,(b-c*a)/np.linalg.norm(b-c*a),np.cross(b,a)]).T
rotmat = F @ G @ np.linalg.inv(F)
else:
rotmat = np.matrix([[c,s],[-s,c]])
return rotmat
def cropvals(v1,v2,ax, minwindow=0.3,pxs=0.1):
c = np.mean([v1,v2],axis=0)
vec = np.diff([[v1],[v2]],axis=0).squeeze()
M = vec2mat(vec,ax)
c1 = M@c * pxs
windowsize = np.max([minwindow,pxs*np.linalg.norm(vec)])
cropmin = np.array(c1 - windowsize/2).squeeze()
cropmax = np.array(c1 + windowsize/2).squeeze()
M1 = np.vstack([M,[[0,0,0]]])
M1 = np.hstack([M1,[[0],[0],[0],[1]]])
trafo = tf.matrix_to_transformation(M1)
return trafo,cropmin,cropmax
# ===================================================
# Script starts here
# load Excel file
strain = sys.argv[1] #'B-CLL'
indir = './Tabellen'
datadir = './data/tomo/'
imagedir = os.path.join(datadir,'images','bdv-n5')
joindir = '../Tomography/joined/'
xmldir = 'xml_orig'
patientjson = './patients.json'
ndigits = 2
overwr_source = False
a=glob.glob(os.path.join(indir,strain,'*'))
# if len(a) > 1:
# raise IndexError('more than one file found')
if len(a) < 1:
raise FileNotFoundError('no Excel file found')
joinfiles=[]
badfiles = False
for xlfile in a:
skip=False
with open(patientjson) as f:
patients = json.load(f)
# xlfile = a[0]
wb = load_workbook(xlfile)
pxs = 0.0015578000068664551
if not 'data' in wb.sheetnames: continue
sheet = wb['data']
# parse patient
patient = os.path.basename(xlfile).split('_')[0]
# anonymize
entity_pat = dict(filter(lambda elem: strain in elem[1], patients.items()))
if patient in entity_pat.keys():
newid = entity_pat[patient]
else:
if len(entity_pat)>0:
last_id = list(entity_pat.values())[-1]
newid = strain + '_' + str(int(last_id.split('_')[1])+1).zfill(ndigits)
else:
newid = strain + '_' + '0'.zfill(ndigits)
patients[patient] = newid
# parse file ID
filesin = [cell.value for cell in sheet['B'][1:]]
# parse positions
pcells = np.array(sheet['I:L'])[:,1:]
x = [c.value for c in pcells[0]]
y = [c.value for c in pcells[1]]
z = [c.value for c in pcells[2]]
c_id = [cell.value for cell in sheet['F'][1:]]
# extract unique targets
targets=[]
for infile in np.unique(filesin):
print('Processing '+infile+'. Patient: '+patient+' ...\n')
grid = infile.partition('_')[0]
tomoid = infile.partition('_')[2]
newxml = os.path.join(imagedir,newid+'_'+infile+'.xml')
# with open(newxml, 'r') as f: xmltxt = f.readlines()
if os.path.exists(newxml):
tree = ET.parse(newxml)
root = tree.getroot()
for child in root:
if child.tag == 'SequenceDescription':
for sqch in child:
if sqch.tag == 'ViewSetups':
for vsch in sqch[0]:
if vsch.tag=='size':
imsize = vsch.text
im_sz = list(map(int,imsize.split(' ')))
# assemble join file path
filepath= tomoid + '.join'
sourcename = newid+'_'+infile
if overwr_source:
mrc_in = os.path.join(joindir,strain, patient,grid,filepath)
try:
mfile = mrc.mmap(mrc_in,permissive = 'True')
except:
print('Error in '+mrc_in)
badfiles = True
continue
pxs = mfile.voxel_size.x / 10000 # in um
im_sz = [mfile.header.nx,mfile.header.ny,mfile.header.nz]
n5link = '_'+patient+'_'+infile
n5file = os.path.join(imagedir,strain,n5link+'.n5')
newlink = os.path.join(strain,sourcename)
newn5 = os.path.join(imagedir,newlink+'.n5')
if not os.path.exists(newn5):
if not os.path.exists(n5file):
print('adding '+infile+ ' to list of files to convert.')
joinfiles.append(patient+'/'+infile)
skip = True
continue
# move n5
shutil.move(n5file,newn5)
# change link in XML
xmlfile = os.path.join(imagedir,strain,'_'+patient+'_'+infile+'.xml')
if not os.path.exists(xmlfile):
xmlfile = os.path.join(xmldir,'_'+patient+'_'+infile+'.xml')
with open(xmlfile, 'r') as f: xmltxt = f.read()
xmltxt = xmltxt.replace(n5link,newlink)
xmltxt = xmltxt.replace(tomoid+'<',sourcename+'<')
#remove original file reference
xmltxt = re.sub('\<OriginalFile\>.*\<\/OriginalFile\>\\n','',xmltxt)
with open(newxml, 'w') as f: f.write(xmltxt)
# os.remove(xmlfile)
# add source to dataset
# generate tomo view
disp = mm.view_metadata.get_image_display(sourcename,[sourcename])
view = mm.get_view(names = [sourcename],
source_types = ['image'],
sources = [[sourcename]],
display_settings = [disp],
is_exclusive = True,
menu_name = 'Tomograms'
)
mm.add_source_to_dataset(dataset_folder = datadir,
source_type = 'image',
source_name = sourcename,
image_metadata_path = newxml,
view = view,
overwrite = overwr_source
)
del(mfile)
# find corresponding rows in data
filerows = [i for i,item in enumerate(filesin) if item == infile]
filelabels = [c_id[i] for i in filerows]
lenrows = [item for item in filerows if 'length' in c_id[item]]
numcent = np.unique([c_id[i] for i in lenrows])
for cent in numcent:
prefix=''
if len(numcent)>1: cent_idx = '_' + cent.split('.')[0]
t=dict()
lenpts = [filerows[i] for i,label in enumerate(filelabels) if (cent.partition('.')[0] in label) & ('length' in label)]
lenpos = np.stack([np.array((x[pt], im_sz[1] - y[pt],z[pt])) for pt in lenpts])
if lenpos.shape[0]<2:
raise ValueError
if lenpos.shape[0]>2:
veclength = np.sum(np.square(np.diff(lenpos,axis=0)),axis=1)
lenpos = lenpos[np.argmax(veclength):(np.argmax(veclength)+2),:]
# midpts = [filerows[i] for i,label in enumerate(filelabels) if (cent.partition('.')[0] in label) & ('diam.mid' in label)]
# midpos = np.array((x[midpts[0]],y[midpts[0]],z[midpts[0]]))
t['file']=filepath
t['lpt']=lenpos
# t['midpt']=midpos
trafo,cropmin,cropmax = cropvals(lenpos[0,:],lenpos[1,:],[1,0,0],minwindow=1,pxs=pxs)
targets.append(t)
centname = sourcename + '_' + cent.split('.')[0]
# generate individual centriole view
affine_trafo = mm.get_affine_source_transform(sources = [sourcename],
parameters = trafo,
source_names_after_transform = [centname + '_tfm']
)
# XXXXXXX
# # crop not yet implemented...
# crop = {"crop":{"max":list(cropmax),
# "min":list(cropmin),
# "shiftToOrigin": True,
# "sourceNamesAfterTransform": [
# centname + "_crop"
# ],
# "sources" : [centname + '_tfm']
# }
# }
crop = mm.get_crop_source_transform(sources = [centname + '_tfm'],
min = cropmin,
max = cropmax,
source_names_after_transform = [
centname + "_crop"
]
)
disp1 = mm.view_metadata.get_image_display(centname,[centname + "_crop"])
cview = mm.get_view(names = [centname],
source_types = ['image'],
sources = [[centname + "_crop"]],
display_settings = [disp1],
is_exclusive = True,
menu_name = 'Centrioles',
source_transforms = [affine_trafo,
crop])
# # XXXXXXXXXXXXXX
# # manual for now...
# cview['sourceTransforms'].append(crop)
mm.add_view_to_dataset(dataset_folder = datadir,
view_name = centname + "_crop",
view = cview)
if not skip:
with open(patientjson,'w') as f:
patients = json.dump(patients,f, indent=4, sort_keys=True)
if not badfiles:
with open(strain+'_joinfiles.txt','w') as f:
f.write('\n'.join(joinfiles))
# normvec = np.cross(np.diff(lenpos,axis=0),lenpos[0]-midpos)
# normvec = normvec/np.linalg.norm(normvec)
# v1 = np.cross(normvec,[0,0,1])
# v1 = v1/np.linalg.norm(v1)
# v2 = np.cross(normvec,v1)
# v2 = v2/np.linalg.norm(v2)