-
Notifications
You must be signed in to change notification settings - Fork 0
/
present.tex
275 lines (207 loc) · 7.82 KB
/
present.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
\documentclass{beamer}
\usetheme{Boadilla}
\usepackage{beamerthemesplit}
\usepackage[latin2]{inputenc}
\usepackage{colortbl}
\usepackage{hhline}
\usepackage{ae,aecompl,amsfonts}
\usepackage{fancyhdr}
\usepackage{hyperref}
\usepackage{verbatim}
\usepackage{array}
\usepackage{pstricks}
\usepackage{listings}
\usepackage{multirow}
\usepackage{wrapfig}
\newcommand{\listing}[2]{\begin{center}\parbox[b]{16cm}{\small\verbatiminput{#1}\normalsize\centering\mbox{Listing #2: Zawarto¶æ pliku #1}}\vskip 5mm\end{center}}
\newcommand{\HRule}{\rule{\linewidth}{0.5mm}}
\def\hilite<#1>{%
\temporal<#1>{\color{gray}}{\color{blue}}%
{\color{blue!25}}}
\title[Haplotype frequency estimation\dots]{Heuristics for haplotype frequency estimation\\ with a large number of analyzed loci}
\author{Micha³ Nowotka\inst{1} \and Robert Nowak\inst{2}}
\institute[Nowotka and Nowak]{
\includegraphics[width=0.12\textwidth]{images/logo}\\ \smallskip
$^{1}$The Institute of Computer Science, Warsaw University of Technology
\and
$^{2}$The Institute of Electronic Systems, Warsaw University of Technology
}
\date{\today}
\begin{document}
\frame{\titlepage}
\section[Agenda]{}
\frame{\tableofcontents}
\section{Theory}
\subsection{Defining the problem}
\frame[plain]
{
\frametitle{Polymorphism}
\begin{wrapfigure}{l}{0.35\textwidth}
\centering
\includegraphics[width=0.23\textwidth]{images/SNP}
\caption{A Single Nucleotide Polymorphism.}
\end{wrapfigure}
$\bullet$ \textbf{Polimorfism} -- occurrence of two or more alleles at the same single locus. \\ \medskip
$\bullet$ \textbf{Genotype}~--~combination~of~alleles~the individual carries. \\ \medskip
$\bullet$ \textbf{Haplotype} -- a~combination~of~alleles~at adjacent loci on the~chromosome~that~are transmitted together.
}
\frame[plain]
{
\frametitle{The problem}
\begin{wrapfigure}{l}{0.43\textwidth}
\centering
\includegraphics[width=0.43\textwidth]{images/poli}
\caption{\small{Inferring haplotypes from genotypes}}
\end{wrapfigure}
$\bullet$~Determining~haplotypes~with~laboratory methods~is~expensive~and time-consuming. \\ \medskip
$\bullet$ In~contrast,~there~are~many cost-effective~techniques~for~determining genotypes. \\ \medskip
$\bullet$ In general, it could be impossible to inferre haplotypes from genotype data.
\begin{figure}
\begin{center}
\includegraphics[width=\textwidth]{images/polimorfizmKIR}
\caption{\small{Determining genotype experiment results}}
\end{center}
\end{figure}
}
\frame[plain]
{
\frametitle{Null allele}
\begin{figure}[h!]
\centering
\includegraphics[width=0.8\textwidth]{images/null}
\caption{\small{Inferring haplotypes from genotypes}}
\end{figure}
\begin{alertblock}{Definition 4. Null allele}
A null allele is a copy of a gene that completely lacks that gene's normal function.
This can be the result of the complete absence of the gene product at the molecular level, or the expression of a non-functional gene product.
\end{alertblock}
}
\frame[plain]
{
\frametitle{Different strategies for inferring haplotypes}
There are many different approaches to phasing problem:
\begin{itemize}
\item Pure parsimony
\item Hidden Markov Model and other Bayesian approaches
\item Maximum-likelihood estimates
\end{itemize}
{
\begin{block}{Definition 3. -- number of haplotype resolutions}
$$r_{j} = 2^{s_{j}-1}$$
where:
\begin{description}
\item[$s_{j}$] -- number of observed loci.
\end{description}
\end{block}
\begin{alertblock}{Complexity problem}
The number of haplotype resolutions grows exponentially with $s_{j}$.
\end{alertblock}
}
}
\subsection{Solution}
\frame[plain]
{
\frametitle{Idea of short overlapping windows}
\begin{block}{Problem}
Every algorithm emploing full space search would operate with $O(c^{n})$ complexity.
This is why it cannot be directly applied to phasing long genotypes.
\end{block}
\begin{block}{Solution}
Genotypes can be divided into shorter pieces that overlap.
\begin{itemize}
\item Piece length is fixed, so is computation time.
\item Phasing n pieces has now $O(n)$ complexity.
\item Multiple pieces can be phased in parrallel.
\item If phasing algorithm is convergent total error should not be large.
\end{itemize}
\end{block}
}
\frame[plain]
{
\frametitle{Short overlapping windows}
\begin{center}
\includegraphics[width=0.45\textwidth]{images/window}
\end{center}
\begin{block}{Question}
What are the error and execution time as a function of \textbf{width} i \textbf{overlap} parameters?
\end{block}
}
\frame[plain]
{
\frametitle{Expectation Maximization algorithm}
\begin{itemize}
\item Convergent
\item Maximum likelihood
\item May converge to a local maximum of the observed data
\end{itemize}
\begin{block}{Having:}
$$P(S|g_{1}, g_{2}, \dots, g_{G})$$
\end{block}
\begin{block}{We look for:}
$$\operatorname*{arg\,max}_{h_{1}, h_{2},\dots, h_{H}} P(S|h_{1}, h_{2},\dots, h_{H})$$
\end{block}
\begin{block}{Question:}
How to express $g$ in terms of $h$ ?
\end{block}
}
\frame[plain]
{
\frametitle{Hardy-Weinberg Equilibrium}
States that both allele and genotype frequencies in a population remain constant.
\begin{block}{HWE (\textit{Hardy-Weinberg Equilibrium})}
$$g_{j} = \sum_{i=0}^{r_{j}} z_{mn}$$ where
\[z_{mn} = \left\{
\begin{array}{l l}
h_{m}^2 & \quad \mbox{for} m=n\\
2h_{m}h_{n} & \quad \mbox{for} m\neq n\\
\end{array} \right. \]
\end{block}
\begin{alertblock}{Assuptions}
Lack of disturbing influences suich as non-random mating, mutations, selection, limited population size, random genetic drift, gene flow etc.
\end{alertblock}
}
\subsection{Results}
\frame[plain]
{
\frametitle{window-based approach -- results}
\begin{center}
\includegraphics[width=0.75\textwidth]{images/error}
\end{center}
}
\frame[plain]
{
\frametitle{window-based approach -- results}
\begin{center}
\includegraphics[width=0.75\textwidth]{images/czas}
\end{center}
}
\section{Implementation}
\frame[plain]
{
\frametitle{Application architecture}
\begin{center}
\includegraphics[width=0.47\textwidth]{images/scheme}
\end{center}
}
\frame[plain]
{
\frametitle{Bibliography}
\begin{itemize}
\item F. Dellaert. The expectation maximization algorithm. Georgia Institute of Technology, Technical
Report Number GIT-GVU-02-20, 2002.
\item A. Gusev, I.I. Mandoiu, and B. Pasaniuc. Highly scalable genotype phasing by entropy minimization.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 5(2):252?261,
2008.
\item R.M. Nowak and R. Ploski. NullHap -- a versatile application to estimate haplotype frequencies from
unphased genotypes in the presence of null alleles. BMC bioinformatics, 9(1):330, 2008.
\item P. Rastas, M. Koivisto, H. Mannila, and E. Ukkonen. A hidden Markov technique for haplotype
reconstruction. Lecture Notes in Computer Science, 3692:140, 2005.
\end{itemize}
}
\frame[plain]
{
\begin{center}
\huge{\textbf{\textit{Thank you for your attention.}}}
\end{center}
}
\end{document}